簡易檢索 / 詳目顯示

研究生: 蘇希爾
Adhikari, Sushil
論文名稱: 雙里德堡 EIT 系統和 Exciton-Polariton 玻色-愛因斯坦凝聚體中交叉相位調製的理論研究
Theoretical Studies on Cross-Phase Modulation in Double Rydberg EIT Systems and the Exciton-Polariton BEC
指導教授: 余怡德
Yu, Ite A.
口試委員: 童世光
Tung, Shih-Kuang
廖文德
Liao, Wen-Te
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 109
中文關鍵詞: 雙里德伯格 EIT
外文關鍵詞: Double Rydberg EIT, Electromagentically Induced Transparency, Cross phase Modulation, Polariton BEC
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 篇文主要在量子光和凝聚物理域行了理研究,注Rydberg磁感透明度(EIT)系中的交叉相位制(XPM)和激子极化子的玻色-因斯坦凝聚(BEC)。
    文的第一部分首先介了EIT和偶极-偶极相互作用(DDI)。文章了三Λ-EIT系,包括其性以及在慢光和光存中的用。然后解了Rydberg EIT系中DDI象。接,提出了具有DDI的Rydberg方案的理公式。了研究在各种件和型下信的和相位移,行了值模。通定优越性因(FOM)相位移和衰的比率,比了并优化了信的XPM。果示,如信中的光子失(∆c2)、耦合度和配置等因素在影信的XPM上起的作用。
    文的第二部分了激子-极化子BEC的理方面。述了BEC的基本原,特性,以及在冷原子蒸气中BEC的技。然后全面回了激子-极化子BEC,包括于激子、极化子及其系形成的信息。探索了3D盒和3D振下BEC的件。已推出BEC中度与能量空之的一般系,以及在不同捕下的凝聚界密度。同也研究了在2D系(例如激子-极化子)中BEC凝聚的件,并且研究果支持了回文中的果。


    This thesis presents two theoretical investigations in quantum optics and condensed matter physics, focusing on cross-phase modulation (XPM) in a double Rydberg electromagnetically induced transparency (EIT) system and Bose-Einstein condensation (BEC) of exciton polaritons.

    The first part of the thesis provides an introduction to EIT and dipole-dipole interaction (DDI). The three-level Λ-EIT system is discussed, including its properties and application in slow light and light storage. The phenomenon of DDI in the Rydberg EIT system is also explained. The theoretical formulation of a double Rydberg scheme with DDI is then presented. Numerical simulations are conducted to study the transmission and phase shift of the signal field under various conditions and pulse types. A figure of merit (FOM), defined
    as the ratio of phase shift to attenuation, is used to compare parameters and optimize signal XPM. The results show that factors such as one-photon detuning in the signal (Δc2), coupling strengths, and pulse configuration play crucial roles in influencing the XPM of the signal field.

    The second part of the thesis discusses the theoretical aspects of exciton-polariton BEC. The basic principles of BEC, its characteristics, and the techniques for achieving BEC in cold atom vapor are outlined. A comprehensive review of exciton-polariton BEC is then presented, including details on excitons, polaritons, and their system formation. The conditions for BEC in case of 3D box potential and a 3D harmonic potential, are explored. A general relationship
    between temperature and energy space in BEC, and the critical density for condensation at different trapping potentials has been derived. The conditions for realizing a BEC-like condensation in a 2D system such as exciton-polaritons are also studied, and the findings
    supports the results from reviewed literature.

    Contents Acknowledgements (Chinese) I Abstract (Chinese) II Acknowledgements III Abstract IV Contents V I Theoretical Study on Cross-Phase Modulation in Double Rydberg EIT System 1 1 Introduction 2 1.1 Background of Study . . . . . . . . . . . . . . . . . . . . . 2 1.2 Motivation and Scope . . . . . . . . . . . . . . . . . . . . . 4 2 EIT system and Dipole interaction ...............................5 2.1 Theory of Three-level Λ-EIT system . . . . . . . . . . . . . 5 2.1.1 Optical Bloch equation . . . . . . . . . . . . . . . . . . . 6 2.1.2 Relating microscopic and macroscopic properties . . . . . . . . . . . . . 10 2.1.3 Transmission and Dispersion profile of EIT . . . . . . . . . . . . . . . . 11 2.1.4 Slow light and light storage . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1.5 Slow and retrieved light of Gaussian-pulse probe in single Λ system . . 16 2.2 Dipole-Dipole interaction in Rydberg EIT . . . . . . . . . . . . . . . . . . . . 17 2.2.1 Properties of Rydberg atom . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.2 Theory of 3 level Rydberg EIT . . . . . . . . . . . . . . . . . . . . . . 18 2.2.3 Mean field theory of 3 level Rydberg EIT with DDI . . . . . . . . . . . 21 2.2.4 Figure of Merit(FOM) for Phase Modulation . . . . . . . . . . . . . . . 27 2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3 Double Rydberg Scheme with DDI 30 3.1 Optical Bloch Equation for Double Rydberg Scheme . . . . . . . . . . . . . . . 30 3.2 OBE with perturbative limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.3 Analytical solution for perturbed OBE’s and MSE’s . . . . . . . . . . . . . . . 37 3.4 Optimization condition for phase and FOM . . . . . . . . . . . . . . . . . . . 37 3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4 Numerical Simulation-Parameter Estimation 39 4.1 CW steady state probe and signal field . . . . . . . . . . . . . . . . . . . . . . 39 4.2 Gaussian signal pulse and CW steady state probe . . . . . . . . . . . . . . . . 51 4.2.1 Role Gaussian pulse width in phase and FOM . . . . . . . . . . . . . . 53 4.2.2 Reduced transmission and pulse delay DDI . . . . . . . . . . . . . . . 55 4.3 Gaussian probe and Gaussian signal pulse . . . . . . . . . . . . . . . . . . . . 57 4.3.1 Attenuation and phase with Δc2 . . . . . . . . . . . . . . . . . . . . . . 57 4.3.2 Optimization of Ωc2 for reduced width 30(1/Γ) . . . . . . . . . . . . . 59 4.3.3 Optimization for same input pulse energy but varied width and amplitude 60 4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5 Conclusion II Theoretical Study on the Exciton-Polariton BEC 66 6 Introduction 67 6.1 Bose-Einstein Condensation (BEC) . . . . . . . . . . . . . . . . . . . . . . . . 67 6.1.1 Basic Concepts of BEC . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6.1.2 Characteristics of BEC . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 6.2 Realization of BEC in Cold Atom Vapor . . . . . . . . . . . . . . . . . . . . . 69 6.3 Review on Excition polariton . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6.3.1 Excitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6.3.2 Polaritons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.3.3 Exciton-Polariton System: Formation and Bosonic Nature . . . . . . . 73 6.4 Motivation and Scope of the Study . . . . . . . . . . . . . . . . . . . . . . . . 73 7 BEC condition for different potential 75 7.1 Ideal Bose gas (3D box potential) . . . . . . . . . . . . . . . . . . . . . . . . . 75 7.1.1 Expression for Critical Density . . . . . . . . . . . . . . . . . . . . . . 77 7.2 Three-dimensional Harmonic Potential . . . . . . . . . . . . . . . . . . . . . . 78 7.2.1 Temperature and Energy Spacing Relation in the Context of BEC . . . 79 7.2.2 Relation of Fugacity and Occupancy with temperature . . . . . . . . . 80 7.2.3 Effective Volume and Critical density for Harmonic trap . . . . . . . . 85 7.3 BEC in 2D and the Role of Potential Traps . . . . . . . . . . . . . . . . . . . 86 7.3.1 BEC in 2D System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 7.3.2 BEC in 2D System with a Harmonic Trap . . . . . . . . . . . . . . . . 87 7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 8 Conclusion 90 Bibliography 92 Appendix A 95 Appendix B 100 B BEC of exciton polaritons, J. Kasprzak et al. . . . . . . . . . . . . . . . . . . . 100 B.1 Exciton and Cavity photon Interactions . . . . . . . . . . . . . . . . . . 101 B.2 Exciton Polaritons Condensation in 2D . . . . . . . . . . . . . . . . . . 103 B.3 Need of Local minima due to disorder in wells . . . . . . . . . . . . . . 104 B.4 Power Driven Phase Transition and BEC Indication . . . . . . . . . . . 105 B.5 Test for Condensate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

    [1] Stephen E Harris, JE Field, and A Imamo˘glu. Nonlinear optical processes using electromagnetically
    induced transparency. Physical Review Letters, 64(10):1107, 1990.
    [2] Lene Vestergaard Hau, Stephen E Harris, Zachary Dutton, and Cyrus H Behroozi.
    Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature,
    397(6720):594–598, 1999.
    [3] Chien Liu, Zachary Dutton, Cyrus H Behroozi, and Lene Vestergaard Hau. Observation
    of coherent optical information storage in an atomic medium using halted light pulses.
    Nature, 409(6819):490–493, 2001.
    [4] Thibault Peyronel, Ofer Firstenberg, Qi-Yu Liang, Sebastian Hofferberth, Alexey V Gorshkov,
    Thomas Pohl, Mikhail D Lukin, and Vladan Vuleti´c. Quantum nonlinear optics
    with single photons enabled by strongly interacting atoms. Nature, 488(7409):57–60,
    2012.
    [5] Ofer Firstenberg, Charles S Adams, and Sebastian Hofferberth. Nonlinear quantum optics
    mediated by rydberg interactions. Journal of Physics B: Atomic, Molecular and Optical
    Physics, 49(15):152003, 2016.
    [6] Shih-Si Hsiao, Ko-Tang Chen, and A Yu Ite. Mean field theory of weakly-interacting
    rydberg polaritons in the eit system based on the nearest-neighbor distribution. Optics
    Express, 28(19):28414–28429, 2020.
    [7] BJ Dalton, R McDuff, and PL Knight. Coherent population trapping. Optica Acta:
    International Journal of Optics, 32(1):61–70, 1985.
    [8] Yi-Hsin Chen, Meng-Jung Lee, I-Chung Wang, Shengwang Du, Yong-Fan Chen, Ying-
    Cheng Chen, and A Yu Ite. Coherent optical memory with high storage efficiency and
    large fractional delay. Physical review letters, 110(8):083601, 2013.
    [9] Ya-Fen Hsiao, Pin-Ju Tsai, Hung-Shiue Chen, Sheng-Xiang Lin, Chih-Chiao Hung, Chih-
    Hsi Lee, Yi-Hsin Chen, Yong-Fan Chen, A Yu Ite, and Ying-Cheng Chen. Highly efficient
    coherent optical memory based on electromagnetically induced transparency. Physical
    review letters, 120(18):183602, 2018.
    [10] Mikhail D Lukin, Michael Fleischhauer, Robin Cote, LuMing Duan, Dieter Jaksch, J Ignacio
    Cirac, and Peter Zoller. Dipole blockade and quantum information processing in
    mesoscopic atomic ensembles. Physical review letters, 87(3):037901, 2001.
    [11] Mark Saffman, Thad G Walker, and Klaus Mølmer. Quantum information with rydberg
    atoms. Reviews of modern physics, 82(3):2313, 2010.
    [12] Raj Kumar Pathria. Statistical mechanics. Elsevier, 2016.
    [13] Christopher J Pethick and Henrik Smith. Bose–Einstein condensation in dilute gases.
    Cambridge university press, 2008.
    [14] Anthony J Leggett. Bose-einstein condensation in the alkali gases: Some fundamental
    concepts. Reviews of modern physics, 73(2):307, 2001.
    [15] Meret Kraemer, Chiara Menotti, Lev Pitaevskii, and Sandro Stringari. Bose-einstein
    condensates in 1d optical lattices: compressibility, bloch bands and elementary excitations.
    The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics,
    27:247–261, 2003.
    [16] William D Phillips. Nobel lecture: Laser cooling and trapping of neutral atoms. Reviews
    of Modern Physics, 70(3):721, 1998.
    [17] Harold J Metcalf and Peter Van der Straten. Laser cooling and trapping. Springer Science
    & Business Media, 1999.
    [18] Mike H Anderson, Jason R Ensher, Michael R Matthews, Carl E Wieman, and Eric A
    Cornell. Observation of bose-einstein condensation in a dilute atomic vapor. science,
    269(5221):198–201, 1995.
    [19] J´ozsef Fort´agh and Claus Zimmermann. Magnetic microtraps for ultracold atoms. Reviews
    of Modern Physics, 79(1):235, 2007.
    [20] Markus Greiner, Olaf Mandel, Tilman Esslinger, Theodor W H¨ansch, and Immanuel
    Bloch. Quantum phase transition from a superfluid to a mott insulator in a gas of
    ultracold atoms. nature, 415(6867):39–44, 2002.
    [21] Kendall B Davis, M-O Mewes, Michael R Andrews, Nicolaas J van Druten, Dallin S
    Durfee, DM Kurn, and Wolfgang Ketterle. Bose-einstein condensation in a gas of sodium
    atoms. Physical review letters, 75(22):3969, 1995.
    [22] Jacek Kasprzak, Murielle Richard, S Kundermann, A Baas, P Jeambrun, Jonathan
    Mark James Keeling, FM Marchetti, MH Szyma´nska, R Andr´e, JL Staehli, et al. Bose–
    einstein condensation of exciton polaritons. Nature, 443(7110):409–414, 2006.
    [23] Ryan Balili, V Hartwell, David Snoke, L Pfeiffer, and Kayte West. Bose-einstein condensation
    of microcavity polaritons in a trap. Science, 316(5827):1007–1010, 2007.
    [24] Yongbao Sun, Patrick Wen, Yoseob Yoon, Gangqiang Liu, Mark Steger, Loren N Pfeiffer,
    Ken West, David W Snoke, and Keith A Nelson. Bose-einstein condensation of longlifetime
    polaritons in thermal equilibrium. Physical review letters, 118(1):016602, 2017.
    [25] LV Butov, CW Lai, AL Ivanov, AC Gossard, and DS Chemla. Towards bose–einstein
    condensation of excitons in potential traps. Nature, 417(6884):47–52, 2002.
    [26] Michael Fleischhauer, Johannes Otterbach, and Razmik G Unanyan. Bose-einstein condensation
    of stationary-light polaritons. Physical review letters, 101(16):163601, 2008.
    [27] Bongjune Kim, Ko-Tang Chen, Shih-Si Hsiao, Sheng-Yang Wang, Kai-Bo Li, Julius
    Ruseckas, Gediminas Juzeli¯unas, Teodora Kirova, Marcis Auzinsh, Ying-Cheng Chen,
    et al. A weakly-interacting many-body system of rydberg polaritons based on electromagnetically
    induced transparency. Communications Physics, 4(1):101, 2021.

    QR CODE