簡易檢索 / 詳目顯示

研究生: 陳聖楷
CHEN, SHENG-KAI
論文名稱: 應用電荷汲引技術於具不同界面製程之鍺金氧半電晶體特性分析研究
Characterization of Ge MOSFETs with Various Interfacial Layer Processes by Charge Pumping Technique
指導教授: 張廖貴術
Chang-Liao, Kuei-Shu
口試委員: 張廖貴術
楊文祿
趙天生
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 96
中文關鍵詞: GeMOSFETscharge pumping
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    以純鍺本身對矽而言,電子遷移率提升兩倍至於電洞可以提升至四倍,但是由於鍺的能隙相對於矽來的小(0.67 eV),在常溫下不容易量測到準確的界面陷阱能量分佈,對於鍺電晶體元件而言,低溫量測變成一個勢在必行的量測方法。
    為了提升鍺基板元件的特性,一層高品質的界面層是需要的。本研究使用四種不界面層搭配不同電漿處理之元件,其界面層分別為(GeO2(H2O plasmna)、GeON(O2+NH3 plasma)、GeON(H2O+NH3 plasma)、AlON(H2O+NH3 plasma)),並搭配high-k材料Al2O3作為高介電氧化層,製作成電晶體。為了分析不同製程方式形成界面層之元件界面層缺陷,論文首先介紹電荷汲引技術(charge pumping)的基本原理與量測方法,藉由載子的捕捉與複合得到之淨電流,稱為汲引電流(Icp)。將不同的汲引電流換算後可得到對應的界面陷阱密度與能量分佈狀況,以及得到邊緣陷阱密度與空間分佈的關係。
    論文中第一部份介紹常溫下鍺電晶體界面特性與基本電特性,界面特性方便包括界面缺陷Nit、界面陷阱能量分佈Dit、邊緣陷阱密度縱深分佈Nbt,常溫下發現GeON(O2+NH3 plasma)作為界面層之元件其界面特性最為優秀,平均Dit最低,此外透過邊緣陷阱密度配合TEM圖可以觀察到元件之界面層厚度很薄其厚度約0.7 nm,而在載子遷移率方面,四種不同界面層之元件載子遷移率皆有很好表現。
    接著比較常溫(300 K)與低溫(233 K)基本電性與界面特性。由於鍺能隙較小(0.67 eV),從基本電性Id-Vg圖與Gp-Vg圖顯示在低溫時明顯抑制載子之產生效應,其代表低溫效應對鍺電晶體元件在電性上有顯著的影響,另外在界面特性方面,從界面陷阱能量分佈圖可以發現低溫時較靠近能隙邊緣缺陷密度容易被量測出來;靠近價帶的缺陷數量與常溫時差不多,而靠近導帶的缺陷數量則較常溫時大,從邊緣陷阱密度縱深分佈圖可以發現常溫下與低溫下缺陷分佈趨勢相當,其代表靠近界面的缺陷在低溫下容易被量測出來而遠離界面之缺陷則較不易被量測出來,較不受低溫影響。
    最後一部分為不同製程方式形成界面層低溫下界面特性與定電壓電應力下可靠度分析。由結果可以看出低溫下較能響應出靠近能隙邊緣缺陷密度,同樣以GeON(O2+NH3 plasma)作為界面層之元件界面特性與可靠度最佳,低溫時載子遷移率與常溫時皆有很好表現且趨勢與常溫下雷同。在可靠度方面同樣以GeON(O2+NH3 plasma)作為界面層之元件受定電壓電應力之後臨界電壓飄移量最低。此外不同製程方法成長界面層之元件其而受定電壓電應力之後界面缺陷增生幾乎都在10%以下,其界面增生行為較為不明顯,界面品質較為優秀。


    目錄 摘要...........................................I 致謝...........................................III 目錄............................................. V 表目錄...........................................VII 圖目錄...........................................VIII 第一章 序論 1 1.1 前言 1 1.2使用High-K介電材料的原因 1 1.3 高介電材料的選擇 2 1.4 純鍺基板作為載子通道 3 1.5 電荷汲引量測技術 4 1.6 論文大綱 5 第二章 應用電荷汲引量測技術分析High-κ介電層電晶體陷阱分佈 9 2.1 研究動機 9 2.2界面陷阱密度與能量分佈 10 2.2.1 基本電荷汲引量測技術 10 2.2.2 陷阱捕捉截面(Capture Cross Section, σ)的計算 11 2.2.3 High-κ電晶體界面陷阱密度能量分佈 13 2.2.4 量測結果與討論 14 2.3 邊緣陷阱密度縱深分佈的量測 14 2.3.1 高介電係數電晶體的邊緣陷阱 14 2.3.2 量測方法與量測裝置 14 2.3.3縱深分佈公式與計算 15 2.3.4量測結果與討論 16 第三章 利用電荷汲引方法分析常溫下鍺電晶體界面特性 27 3.1 研究動機 27 3.2 製程步驟 28 3.3 實驗結果與討論 30 3.3.1 常溫下不同製程方法界面層界面缺陷密度分析 30 3.3.2常溫下不同製程方法界面層界面陷阱密度能量分佈 311 3.3.3 常溫下不同製程方法界面層邊緣陷阱密度縱深分佈 31 3.3.4 常溫下不同製程方法形成界面層對能隙中間界面缺陷密度之影響 33 3.3.5 常溫下不同製程方法形成界面層之電晶體元件電特性分析 34 3.4 結論 35 第四章 常溫與低溫下鍺電晶體電性與界面特性分析 54 4.1 研究動機 54 4.2實驗結果與討論 55 4.2.1 常溫與低溫下基本電性分析 56 4.2.2 常溫與低溫下界面特性分析 57 4.3 結論 59 第五章 具不同製程形成界面層鍺金氧半電晶體之低溫電特性與定電壓應力引致缺陷增生的分析 71 5.1 研究動機 72 5.2 實驗結果與討論 73 5.2.1 低溫下量測不同製程方式形成界面層電晶體元件界面特性 73 5.2.2 不同製程方式形成界面層鍺電晶體元件負定電壓電應力下之臨界電壓飄移 74 5.2.3施以負定電壓電應力之元件-電荷分離技術分析氧化層缺陷與界面缺陷 75 5.2.4 不同製程方式形成界面層鍺電晶體元件正定電壓電應力下之臨界電壓飄移 75 5.2.5施以正定電壓電應力之元件-電荷分離技術分析氧化層缺陷與界面缺陷 76 5.2.6施以負定電壓電應力之元件-電荷汲引技術分析界面缺陷 76 5.2.7施以正定電壓電應力之元件-電荷汲引技術分析界面缺陷 77 5.3 結論 77 第六章 結論 92 文獻參考 94

    文獻參考
    [1] Dieter K. Schroder, “SemiconductorMaterial and Device Characterization” third edition, 2006
    [2] J. H. Stathis, et al., "Reliability projection for ultra-thin oxides at low voltage", Electron Devices Meeting (IEDM), Vol. 71, pp.167-170, 1998
    [3] E. P. Raynes, et al., "Method for the measurement of the K22 nematic elastic constant", App. Phys. Lett., Vol. 82, pp.13-15, 2003
    [4] M. Houssa, et al., "Electrical Properties of High-k Gate Dielectrics:Challenges, Current Issues, and Possible Solutions", Material Science and Enginerring R, pp.37-85, 2006
    [5] H.S. Momose, et al., IEEE, Trans. Electron Devices, Vol. 43, pp.1223, 1996
    [6] S. Saito, et al., "Unified Mobility Model for High-k Gate Stacks", Electron Devices Meeting (IEDM), pp.797-800, 2003
    [7] R. People and J.C Bean, "Calculation of Critical Layer Thickness Versus Lattice Mismatch ofr GexSi1-x/Si Strained-layer Heterostructures", App. Phys. Lett., Vol. 47, pp.322-324, 1985
    [8] W. P. Bai, et al., "Si interlayer passivation on germanium MOS capacitors with high-κ dielectric and metal gate", IEEE, EDL, Vol. 26, p.378-380, 2005
    [9] S.M Sze, "Semiconductor device,physics and technology" 2nd ed, p.537, 2001
    [10] J. S. Bruglar and P. G. A. Jaspers, "Charge Pumping in MOS Devices," IEEE, T-ED, Vol.16, pp.297-302, 1969
    [11] J. P. Han, et al., "Energy Distribution of Interface Traps in High-K Gated MOSFETs,", VLSI, pp.161-162, 2003
    [12] Y. Maneglia and D. Bauza, "Extraction of slow trap concentration profiles in metal-oxide-semiconductor transistors using the charge pumping method," JAP, vol. 79, pp.4187–4192, 1996
    [13] S. Jakschik, et al., "Influence of Al2O3 dielectrics on the trap-depth profiles in MOS devices investigated by the charge-pumping method," IEEE, T-ED, vol. 51, pp.2252-2255, 2004
    [14] Wenjuan Zhu, et al., "Mobility Measurement and Degradation Mechanisms of MOSFETs Made With Ultrathin High-k Dielectrics," IEEE, EDL, vol. 51, no. 1, pp. 98-105, 2004
    [15] K. Martens et al., "Applicability of Charge Pumping on Germanium MOSFETs", IEEE, EDL, vol.29, pp.1364-1366, 2008
    [16] Duygu Kuzum, et al., "The Effect of Donor/Acceptor Nature of Interface
    Traps on Ge MOSFET Characteristics", IEEE, T-ED, VOL. 58, NO. 4, pp.1015-1021, 2011
    [17] 蔡輔桓, "應用電荷汲引技術於先進金氧半電晶體高介電閘層之缺陷探測分析研究", 國立清華大學工程與系統科學系, 2011
    [18] Rui Zhang et al., "High-Mobility Ge pMOSFET With 1-nm EOT Al2O3/GeOx/Ge Gate Stack Fabricated by Plasma Post Oxidation", IEEE, T-ED, Vol.59, pp.335-341, 2012
    [19] Koen Martens et al., "Impact of Si-Thickness on Interface and Device
    Properties for Si-passivated Ge pMOSFETs", Solid-State Device Research Conference, pp.138-141, 2008
    [20] Dieter K. Schroder, "Semiconductor material and device characterization", Third Edition, pp.347-352, 2005
    [21] Rui Zhang et al., "High-Mobility Ge p- and n-MOSFETs With 0.7-nm EOT Using HfO2/Al2O3/GeOx/Ge Gate Stacks Fabricated by Plasma Postoxidation", IEEE, T-ED, Vol.60, pp.927-934, 2013
    [22] Ruilong Xie et al., "High Mobility High-k/Ge pMOSFETs with 1 nm EOT-New Concept on Interface Engineering and Interface Characterization", Electron Devices Meeting (IEDM), pp.1-4, 2008
    [23] K. Martens, et al., "On the Correct Extraction of Interface Trap Density of MOS Devices With High-Mobility Semiconductor Substrates, IEEE, EDL, vol.55, pp.547-556, 2008
    [24] E. Y. Wu, et al., "Experimental evidence of tBD power-law for voltage-
    Dependence of oxide breakdown in ultrathin gate oxides", IEEE, EDL, vol.49, no.12, pp.2244-2253, 2002
    [25] R. Degraeve et al., "Degradation and breakdown of 0.9nm EOT SiO2/ ALD HfO2/metal gate stacks under positive Constant Voltage Stress", Electron Devices Meeting (IEDM), pp.408-411, 2005
    [26] M. Walters et al., "The distribution of radiation-induced charged defects and neutral electron traps in SiO2 and the threshold voltage shift dependence on oxide thickness", JAP, vol.45, pp.2992-3002, 1990

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE