簡易檢索 / 詳目顯示

研究生: 陳宏瑋
Chen, Hong-Wei
論文名稱: 切換式降壓型鋰電池充電器暨電池溫度保護功能
A Buck Li-ion Battery Charger with Battery Temperature Protection
指導教授: 徐永珍
Hsu, Yung-Jane
口試委員: 賴宇紳
Lai, Yu-Shen
劉堂傑
Liu, Tang-Jie
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 83
中文關鍵詞: 鋰電池充電器充電溫度保護降壓型穩壓器定電壓定電流效率
外文關鍵詞: Battery charger, Battery temperature protection, Buck, Constant voltage, Constant current, Efficiency
相關次數: 點閱:75下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鋰電池目前是最常見的可充式電池之一,具有重量輕、高能量密度等優點,因此廣泛應用於行動裝置、電動汽車與能源儲存等領域,然而,為了避免電池過充電與過放電的問題,必須精確地控制電池的電壓和電流。
    本論文依照鋰電池的充電特性,將充電晶片分為涓滴電流模式(Trickle-current mode)、定電流模式(Constant-current mode)以及定電壓模式(Constant-voltage mode)。當鋰電池電壓低於3V時,充電器將啟動涓滴電流模式,以提前將電池充電,隨著電池電壓超過3V,充電器轉為定電流模式,以縮短充電時間,最終,當電池電壓接近飽和值4.2V時,充電器切換至定電壓模式,避免過充電的發生。
    目前市面上的充電器大多支援快速充電,為了縮短充電時間,通常會延長定電流充電時間並提高充電電流,然而,長時間的高電流充電會導致電池內阻的增加,降低電池可用容量,進而縮短電池的使用壽命,此外,電池操作溫度不應長時間超過40度攝氏,否則可能導致損壞,因此,本論文專注於設計電池溫度保護功能電路,該方法是根據熱敏電阻的規格表,找出0度到40度的參考阻值,並使用參考電壓電路產生器實現0度和40度的參考電壓,當熱敏電阻檢測到電池溫度時,會回傳一個電壓,與0度和40度的參考電壓進行比較,如果溫度超出正常工作範圍,則比較器會輸出保護訊號,切斷功率電晶體的電流路徑,將電池充電電流降低至零,以確保充電過程的安全性。
    本晶片採用TSMC 0.18 um 高壓製程實現充電器電路,晶片面積為1.5 × 2.17 mm²。在此設計中,模擬充電效率達94.4%,實測充電效率為66%,並且充電器的電池溫度保護功能正常運作。


    Lithium batteries, known for their lightweight and high energy density, are widely used in mobile devices, electric vehicles, and energy storage. Accurate control of battery voltage and current is essential to prevent overcharge and overdischarge.
    This paper, based on the charging characteristics of lithium batteries, categorizes the charging chip into Trickle-current mode, Constant-current mode, and Constant-voltage mode. When the lithium battery voltage is below 3V, the charger initiates Trickle-current mode to begin charging the battery in advance. As the battery voltage surpasses 3V, the charger switches to Constant-current mode to expedite the charging process. Finally, as the battery voltage approaches the saturation value of 4.2V, the charger transitions to Constant-voltage mode to prevent overcharging.
    Currently, most chargers on the market support fast charging. Typically, to reduce charging time, they extend the constant current charging duration and elevate the charging current. However, prolonged high-current charging results in an increase in the internal resistance of the battery, meaning the available capacity of the battery is reduced, and the battery's service life is shortened.
    On the other hand, the battery should not be operated at high temperatures (exceeding 40 degrees Celsius) for an extended period; otherwise, it may lead to damage. Therefore, this paper focuses on designing the circuit for the battery temperature protection function.
    This chip utilizes the TSMC 0.18 high-voltage process to implement the charger circuit, with a chip area of 1.5 × 2.17 mm². Within this, the simulated charging efficiency is 94.4%, the measured charging efficiency is 66%, and the battery temperature protection function of the charger operates normally.

    致謝 -----------------------------------------i 摘要 -----------------------------------------ii Abstract-----------------------------------------iii 目錄 -----------------------------------------vi 圖目錄 -----------------------------------------vii 表目錄 -----------------------------------------xi 第一章 緒論 --------------------------------1 1-1 研究動機 ---------------------------------1 1-2 相關研究發展狀況 -------------------------2 1-3 論文組織 --------------------------------4 第二章 鋰離子電池的原理與介紹-------------------5 2-1 鋰離子電池的構造與化學反應---------------6 2-2 鋰離子電池的的優缺點---------------------6 2-3鋰離子電池充電和放電的安全性問題--------------8 2-4鋰離子電池的充電方法--------------------------9 2-4-1定電壓充電法 (CV)---------------------------9 2-4-2 定電流充電法 (CC)--------------------------10 2-4-3 定電流轉定電壓充電法 (CC-CV)---------------10 2-5 鋰離子電池之等效電路---------------------11 第三章 降壓式穩壓器電路設計---------------------13 3-1 降壓式轉換器 (Buck Converter)----------------13 3-2 脈波寬度調變 (Pulse Width Modulation; PWM)---15 3-3 轉換效率 (Efficiency) 分析 -----------------16 第四章 電路設計---------------------------------18 4-1 設計規格與系架構-------------------------18 4-1-1電路設計規格--------------------------------18 4-1-2 系統架構 ---------------------------------19 4-1-3電路架構 ---------------------------------20 4-2 頻率補償器介紹---------------------------21 4-2-1 運算放大器 (OPA) / 轉導放大器 (OTA)--------23 4-2-2 Type I/II/III頻率補償器--------------------26 4-3 頻率補償器設計---------------------------23 4-3-1 Power stage (Buck converter)---------------23 4-3-2 Type II compensator------------------------26 4-3-3 Loop gain analysi--------------------------28 4-4電感電流偵測電路------------------------------33 第五章 晶片模擬與佈局---------------------------34 5-1 電路設計與模擬---------------------------34 5-1-1 磁滯比較器---------------------------------34 5-1-2 斜坡振盪產生器-----------------------------36 5-1-3 充電模式選擇器-----------------------------38 5-1-4 Constant-gm circuit------------------------38 5-1-5 帶差參考電壓電路---------------------------40 5-1-6 參考電壓電路產生器-------------------------42 5-1-7 電池溫度保護電路 (Battery temperature protection circuit) 42 5-1-8 死區時間控制電路 (Deadtime control)--------44 5-1-9 整體電路模擬結果---------------------------45 5-2 晶片佈局與考量---------------------------52 5-3 晶片佈局---------------------------------56 第六章 量測結果與討論---------------------------58 6-1 平台建立與量測步驟-----------------------58 6-2 量測結果---------------------------------63 6-3 問題與討論-------------------------------70 6-3-1 效率分析-----------------------------------70 6-3-2 Loop gain analysi--------------------------72 第七章 結論與後續研究建議-----------------------79 7-1 結論 ---------------------------------79 7-2 後續研究建議-----------------------------80 參考文獻 ---------------------------------82

    [1] T. -C. Huang, R. -H. Peng, T. -W. Tsai, K. -H. Chen and C. -L. Wey, "Fast Charging and High Efficiency Switching-Based Charger With Continuous Built-In Resistance Detection and Automatic Energy Deliver Control for Portable Electronics," in IEEE Journal of Solid-State Circuits, vol. 49, no. 7, pp. 1580-1594, July 2014.
    [2] Z. Ye, X. Wu, Y. Sun and J. Lu, "A Universal Protection Controller for Li-ion Battery Charger," 2010 Asia-Pacific Power and Energy Engineering Conference, Chengdu, China, 2010, pp. 1-4.
    [3] Y. Qu et al., "A 12-W 96.1%-Efficiency eFuse-Based Ultrafast Battery Charger Supporting Wireless and USB Power Inputs," 2021 IEEE Custom Integrated Circuits Conference (CICC), Austin, TX, USA, 2021, pp. 1-2.
    [4] Guangxu Zhang, Xuezhe Wei, Siqi Chen, Jiangong Zhu, Guangshuai Han, Xueyuan Wang, and Haifeng Dai, "Revealing the Impact of Fast Charge Cycling on the Thermal Safety of Lithium-Ion Batteries, " ACS Applied Energy Materials 2022 5 (6), pp. 7056-7068.
    [5] Y. -H. Jung et al., "A Fast and Highly Accurate Battery Charger With Accurate Built-In Resistance Detection," in IEEE Transactions on Power Electronics, vol. 33, no. 12, pp. 10051-10054, Dec. 2018.
    [6] Y. Qu, W. Shu, L. Qiu, Y. -C. Kuan, S. -H. W. Chiang and J. S. Chang, "A Low-Profile High-Efficiency Fast Battery Charger With Unifiable Constant-Current and Constant-Voltage Regulation," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 11, pp. 4099-4109, Nov. 2020.
    [7] A. El Attafi, M. Ouremchi, K. El Khadiri, H. Qjidaa and M. O. Jamil, "Charging Interface based on an LDO Regulator for a Li-Ion Battery in 180nm CMOS Technology," 2021 9th International Renewable and Sustainable Energy Conference (IRSEC), Morocco, 2021, pp. 1-4.
    [8] Jokar, A., Rajabloo, B., Désilets, M., & Lacroix, M. (2016). Review of simplified Pseudo-two-Dimensional models of lithium-ion batteries. Journal of Power Sources, 327, pp. 44–55.
    [9] Specifications from Panasonic P 14500 Battery, 840mAh, 3.4A, 3.7V, Grade A Lithium-ion (UR14500P), https://voltaplex.com/media/whitepapers/specification-sheet/Panasonic_UR14500P_Specification_Sheet.pdf
    [10] 張嘉峻,應用於可攜式發電機與直流電源供應器之切換式鋰離子電池充電器,碩士論文,清華大學電子工程研究所,七月 2012。
    [11] 王信雄,開關轉換器-控制理論與實務,ISBN 978-986-92378-0-2
    [12] Switching Regulator IC Series, Calculation of Power Loss, ROHM, No.AEK59-D1-0065-2.
    [13] How the Switching Frequency Affects the Performance of a Buck Converter, TEXAS INSTRUMENTS, Application Report, SLAVED3-July 2019.
    [14] G. Villar, E. Alarcon, J. Madrenas, F. Guinjoan and A. Poveda, "Energy optimization of tapered buffers for CMOS on-chip switching power converters," 2005 IEEE International Symposium on Circuits and Systems, Kobe, Japan, 2005, pp. 4453-4456 Vol. 5.

    QR CODE