研究生: |
黃興閎 Huang, Tony Hsin-Hong |
---|---|
論文名稱: |
背向階梯流場之剪流層非穩態特性研究 Transient Flow Structure of Shear Layer over a Backward-Facing Step |
指導教授: | 楊鏡堂 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 151 |
中文關鍵詞: | 突張室 、背向階梯 、暫態 、再接觸 、分離流場 、壁面噴流 、PIV 、頻譜 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
背向階梯流場為最典型的邊界層分離後再接觸之流場(separated/ reattached boundary layer flow),於工程上有相當廣泛的應用,其穩態結構及各種應用之相關研究資料豐富,本文嘗試以不同於其他研究的觀點,利用五種不同階梯結構及含壁面噴流之背向階梯變化流場,進行PIV、流場觀測及壓力擾動等實驗量測,以暫態流場結構的觀點出發,分析不同流場造成基本構造的改變。實驗規劃以流場觀測作為流場暫態行為的依據,以PIV量測取得速度場及流場紊流性質,再以壓力擾動頻譜驗證流場中的結構變化特徵。
實驗中得知暫態流場結構和穩態結構大為不同,各部分細部結構間相互作用呈現不斷變化的非穩定狀態,剪流層為流逸之渦流所構成,主迴流區為多重迴流泡所形成,這些迴流泡為剪流層渦流相互作用後組成,角落渦漩大小隨時間消長。剪流層渦漩有三種主要發展模式交替出現,回饋噴流有兩種行為模式,是為角落渦漩之消長驅動源。
在不同階梯形狀之流場中可歸納出角落渦漩、回饋噴流及剪流層三者間的交互作用,並且於迴流區長度有相符合的解釋。角落渦漩的大小和結構是背向階梯流場表現的關鍵因素,以綜觀的角度而言,角落渦漩和鄰近流體之質量交換不明顯,故在相同迴流區尺度下,角落渦漩尺度愈大則迴流量愈小。但角落渦漩和主迴流區之質量交流對於不同的角落渦漩結構卻有重要的影響。
含壁面噴流之背向階梯流場實驗發現,壁面噴流對迴流結構的影響順序為角落渦漩、主迴流區及剪流層,含有自由流質量之流體逐漸無法進入噴流流體主導之趨勢,確立了整個流場的質量交流路徑為自由流、剪流層、主迴流區而至角落渦漩。
壓力擾動頻譜中顯示,本實驗中基本背向階梯流場的特徵頻率大約為n = 1.23(53 Hz),此流場主頻為主迴流區之迴流泡所造成之訊號,而階梯角落及再接觸區之極低頻特徵頻率接近,間接證明了剪流層低頻拍擊運動與角落渦漩消長有關。
本文對於背向階梯流場之非穩態特性作深入的探討,釐清各細部結構間的相互作用,凸顯了其功能性與多樣性,期望本研究之成果能夠提供後進研究者一個思緒方向,對於背向階梯流場的應用,也提供了更多的思考空間及參考價值。
Abbott, D. E., and Kline, S. J., “Experimental Investigation of Subsonic Turbulent Flow Over Single and Double Backward-facing Steps,” ASME Journal of Basic Engineering, Vol. 84D, 1962, pp. 317-325.
Adams, E. W., and Johnston, J. P., “Flow Structure in the Near-Wall Zone of a Turbulent Separated Flow,” AIAA Journal, Vol. 26, 1988, pp. 932-939.
Adrian, R. J., “Particle-Imaging Techniques for Experimental Fluid Mechanics,” Annual Review of Fluid Mechanics, Vol. 23, 1991, pp. 261-304
Adrian, R. J., “Scattering Particle Characteristics and Their Effect on Pulsed Laser Measurements of Fluid Flow; Speckle Velocimetry vs Particle Image Velocimetry,” Applied Optics, Vol. 23, No. 11, 1984, pp. 1690-1691
Adrian, R. J., “Statistical Properties of Particle Image Velocimetry Measurements in Turbulent Flow,” Laser Anemometry in Fluid Mechanics, 1998, pp. 115-29.
Bradshaw, P., and Wong, F. Y. F., “The Reattachment and Relaxation of Turbulent Shear Layer,” Journal of Fluid Mechanics, Vol. 52, 1972, pp. 113-135.
Brown, G. L., and Roshko, A., “On Density Effects and Large Structure in Turbulent Mixing Layers,” Journal of Fluid Mechanics, Vol. 64, Part 4, 1974, pp. 775-816.
Chun, K. B., and Sung, H. J., “Visualization of Locally-Forced Separated Flow over a Backward-Facing Step,” Experiments in Fluid, Vol. 25, 1998, pp.133-142.
Collier, Jr., F. S., and Schetz, J. A., “Injection into a Turbulent Boundary Layer through Different Porous Surfaces,” AIAA Journal, Vol. 22, No. 6, 1984, pp. 839-841.
Driver, D. M., and Seegmiller, H. L., “Time Dependent Behavior of a Reattaching Shear Layer,” AIAA Journal, Vol. 25, 1987, pp. 914-919.
Eaton, J. K., and Johnston, J. P., “A Review of Research on Subsonic Turbulent Flow Reattachment,” AIAA Journal, Vol. 19, 1981, pp. 1093-1100.
Eaton, J. K., and Johnston, J. P., “Low Frequency Unsteadyness of a Reattaching Turbulent Shear Layer,” Turbulent Shear Flow 3, 1981, pp. 162-170.
Eckert, E. R. G., and Cho, H. H., “Transition from Transpiration to Film Cooling,” International Journal of Heat and Mass Transfer, Vol. 37, Suppl. 1, 1994, pp. 3-8.
Etheridge, D. W., and Kemp, P. H., “Measurement of Turbulent Flow Downstream of a Rearward-Facing Step,” Journal of Fluid Mechanics, Vol. 86, 1978, Pt. 3, pp. 545-566.
Farabee, T. M., and Casarella, M. J., “Measurements of Fluctuating Wall Pressure for Separation/Reattached Boundary Layer Flows,” Journal of Vibration, Acoustic, Stress, and Reliability in Design, Vol. 108,1986, pp. 301-307.
Ganji, A. R., and Sawyer, R. F., “Experimental Study of the Flowfield of a Two-Dimensional Premixed Turbulent Flame,” AIAA Journal, Vol. 18, No. 7, 1980, pp. 817-824.
Giovannini, A., and Bortolus, N. V., “Heat Transfer in the Reattachment Zone downstream of a Backward-facing Step,” Revue Generale de Thermique, Vol. 37, 1997, pp. 89-102.
Grant, I., “Particle Image Velocimetry: a Review,” Journal of Mechanical Engineering Science, Vol. 211, 1997, Part C, pp. 55-76.
Hasan, M. A. Z., “The Flow over a Backward-Facing Step under Controlled Perturbation: Laminar Separation,” Journal of Fluid Mechanics, Vol. 238, 1992, pp. 73-96.
Heenan, A. F., and Morrison, J. F., “Passive Control of Pressure Fluctuations Generated by Separated Flow,” AIAA Journal, Vol. 36, No. 6, 1998, pp. 1014-1022.
Huang, H. T., and Fiedler, H. E., “A DPIV Study of a Starting Flow Downstream of a Backward-Facing Step,” Experiments in Fluids, Vol. 23, 1997, pp. 395-404.
Isomoto, K., and Honami, S., “The Effect of Inlet Turbulence Intensity on the Reattachment Process Over a Backward-Facing Step,” Journal of Fluids Engineering, Vol. 111, 1989, pp. 87-92.
Kim, J., Kline, S. J., and Jonston, J. P., “Investigation of a Reattaching Turbulent Shear Layer: Flow Over a Backward-Facing Step,” Journal of Fluids Engineering, Vol. 102, 1980, pp. 302-308.
Kondoh, T., Nagano, Y., and Tsuji, T., “Computational Study of Laminar Heat Transfer Downstream of a Backward-Facing Step,” International Journal of Heat and Mass Transfer, Vol. 36, 1993, pp. 577-591.
Le, H., Moin, P., and Kim, J., “Direct Numerical Simulation of Turbulent Flow over a Backward-Facing Step,” Journal of Fluid Mechanics, Vol. 330, 1997, pp. 349-374.
Lee, S. C., “A New Law of Wall for Large-Eddy Simulation of Turbulent Flow with Wall Transpiration and Pressure Gradient,” Proceedings of the Twenty-third National Conference on Theoretical and Applied Mechanics, Hsinchu, Taiwan, Vol. 3, 1999, pp. 336-343
Lee, S. C., Yang, J. T., and Chao, Y. C., “Large Eddy Simulation of Transition from Transpiration to Film Cooling over the Backstep Flow,” Book of Abstracts PSFVIP-3, March 18-21, Maui, Hawaii, U.S.A., 2001, pp. 149-150.
Mabey, D., “Analysis and Correlation of Data on Pressure Fluctuations in Separated Flow” Journal of Aircraft, Vol. 9, 1972.
McGuinness, M., “Flow with a Separation bubble-Steady and Unsteady Aspects” Ph.D. dissertation, Cambridge University.
Olson, R. M., and Eckert, E. R. G., “Experimental Studies of Turbulent Flow in a Porous Circular Tube with Uniform Fluid Injection through the Tube Wall,” Journal of Applied Mechanics, Vol. 33, 1966, pp. 7-17.
Pickering, J. D., and Halliwell, N. A., “Speckle Photography in Fluid Flows: Signal Recovery with Two-Step Processing,” Applied Optics,Vol. 23, No. 8, 1984, pp. 1128–1129
Scarano, F., Benocci, C., and Riethmuller, M. L., “Pattern Recognition Analysis of the Turbulent Flow Past a Backward Facing Step,” Physics of Fluids, Vol. 11, No. 12, 1999, pp. 3808-3818.
Simpson, R. L., “Turbulent Boundary Layer Separation,” Annual Review of Fluid Mechanics, Vol. 21, 1989, pp. 205-234.
Spazzini P. G., Iuso, G., Oronato, M., and Mole, A., “DPIV Analysis of Turbulent Flow over a Back-Facing Step,” Proceedings of the 8th International Symposium on Flow Visualization, Paper 238, Sorrento, Italy, 1998.
Smyth, R., “Turbulent Flow Over a Plane Symmetric Sudden Expansion,” ASME Journal of Fluid Engineering, Vol. 101, No. 3, pp. 348-353.
Troutt, T. R., Scheelke, B., and Norman, T. R., “Organized Structure in a Reattaching Separated Flow Field,” Journal of Fluid Mechanics s, Vol. 143, 1984, pp. 413-427.
Tsou, F. K., Chen, S. J., and Aung, W., “Starting Flow and Heat Transfer Downstream of a Backward-Facing Step,” Journal of Heat Transfer, Vol. 113, 1991, pp. 583-589.
Wu, C. Y. Y., Yang, J. T., and Yang, H. T., “Effects of Inlet Configuration on Ignition and Fuel Regression Behind a BackStep,” AIAA Journal, Vol. 13, No. 6, 1997, pp. 714-720.
Yang, J. T., Gu J. D., and Ma W. J., “Transient Cooling Effect by Wall Mass Injection After Backstep in High Temperature Flow Field,” International Journal of Heat and Mass Transfer, Vol. 44, 2001, pp. 843-855.
Yoshioka, S., Obi, S., and Masuda, S., “Organized Vortex Motion in Periodically Perturbed Turbulent Separated Flow over a Backward-facing Step,” International Journal of Heat and Fluid Flow, Vol. 22, 2001, pp. 301-307.
Yang, J. T., Tsai, B. B., and Tsai, G. L., “Separated-Reattaching Flow over a Backstep with Uniform Normal Mass Bleed,” Journal of Fluids Engineering, Vol. 116, 1994, pp. 29-35.
林彥夆,突張室之冷卻增益機制研究,國立清華大學動力機械工程學系碩士論文,2003。
李世昭,背向階梯流場模擬與側向噴流混合效應之大渦模擬分析,國立清華大學動力機械工程學系博士論文,2002。
馬萬鈞,分離流場之蒸散冷卻現象研究,國立清華大學動力機械工程學系博士論文,2000。
蘇裕傑,高溫分離流場之壁面蒸散冷卻暫態研究,國立清華大學動力機械工程學系碩士論文,2001。