研究生: |
徐嫈茜 Xu, Ying-Qian |
---|---|
論文名稱: |
粒線體 Lon與 PYCR1之交互作用經由代謝重新編程增硬細胞外基質與促進癌症轉移的機制探討 The mechanism of mitochondrial Lon-PYCR1 interaction in stiffening extracellular matrix and promoting cancer metastasis via proline metabolic reprogramming |
指導教授: |
李岳倫
Lee, Yueh-Luen 詹鴻霖 Chan, Hong-Lin |
口試委員: |
林愷悌
Lin, Kai-Ti 王彥雄 Wang, Yan-Hsiung |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 68 |
中文關鍵詞: | Lon蛋白酶 、5-吡咯啉-5-羧酸還原酶 、脯氨酸代謝 |
外文關鍵詞: | Lon protease, pyrroline-5-carboxylate reductase 1 (PYCR1), proline metabolism |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
腫瘤的發展與癌細胞因應腫瘤微環境的壓力進行代謝重新編有關。Lon 是一種位於粒線體基質的蛋白酶,可幫助癌細胞對不利微環境,如高氧化壓力、缺氧等,做出反應以利存活。粒線體在細胞內擔任能量工廠、產生ATP,呼吸鏈與許多代謝生化反應在此胞器進行。先前研究發現,Lon 可以通過促進上皮間質轉型的方式來誘導癌細胞發生轉移作用,並且可與pyrroline-5-carboxylate reductase 1 (PYCR1) 結合,影響其穩定性。PYCR1同樣也是一種位在粒線體的酵素,負責脯氨酸的合成。之前的研究認為,脯氨酸的生成會促進膠原蛋白合成,並使細胞外基質硬化而促進癌症轉移。先前也已經證實Lon與PYCR1有交互作用,然而,Lon 如何藉由與 PYCR1的相互作用來調節脯氨酸相關的代謝重新編程和轉移,其詳細機制尚未了解。在本研究中,發現當癌症細胞 Lon 過量表達時,PYCR1 的蛋白含量會升高,並且Lon透過上調PYCR1的作用促進膠原蛋白合成,而可能使細胞外基質硬化,從而誘導腫瘤轉移。此外,Lon與PYCR1增加了NAD+/NADH的比率,這可能是相互作用下改變了細胞代謝的形式,而進一步促進瓦式效應的機制。綜上所述,本研究表明經Lon與PYCR1的相互作用影響代謝重新編程,進而支持癌細胞增殖和轉移作用。
Tumor progression is associated with metabolic reprogramming in the tumor microenvironment (TME). Lon is a mitochondrial protease, helps cancer cells response to the stress, such as peroxidation stress, hypoxic. Besides, Lon induces cancer cell metastasis by promotes epithelial-mesenchymal transition (EMT). Similarly, pyrroline-5-carboxylate reductase 1 (PYCR1) is a mitochondrial enzyme which is essential for synthesis of proline. Many studies demonstrated that proline metabolism is also related to cancer metastasis by increase collagen synthesis to making extracellular matrix (ECM) stiffening. Previous study has showed that Lon and PYCR1 have interaction. However, there is little information in detail on how mitochondrial Lon regulates metabolic reprogramming and metastasis through the interaction with PYCR1. In this study, it has been found that when Lon was overexpressed, the level of PYCR1 was elevated. Lon promotes collagen synthesis depends on PYCR1 upregulated and is proposed to makes the ECM stiffened which induces tumor metastasis. Furthermore, Both Lon and PYCR1 increase in NAD+/NADH ratio that may allow cells to transform to the Warburg effect. To sum up, this study demonstrated that the interaction of Lon-PYCR1 plays a crucial role in metabolic reprogramming and supports cancer cell proliferation and metastasis.
1. Warburg, O., On the origin of cancer cells. Science, 1956. 123(3191): p. 309-14.
2. Seltzer, M.J., et al., Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1. Cancer Res, 2010. 70(22): p. 8981-7.
3. Luan, W., et al., miR-137 inhibits glutamine catabolism and growth of malignant melanoma by targeting glutaminase. Biochem Biophys Res Commun, 2018. 495(1): p. 46-52.
4. Auten, R.L. and J.M. Davis, Oxygen toxicity and reactive oxygen species: the devil is in the details. Pediatr Res, 2009. 66(2): p. 121-7.
5. Wei, Z., et al., Metabolism of Amino Acids in Cancer. Front Cell Dev Biol, 2020. 8: p. 603837.
6. Vettore, L., R.L. Westbrook, and D.A. Tennant, New aspects of amino acid metabolism in cancer. Br J Cancer, 2020. 122(2): p. 150-156.
7. Aggarwal, V., et al., Role of Reactive Oxygen Species in Cancer Progression: Molecular Mechanisms and Recent Advancements. Biomolecules, 2019. 9(11).
8. Jin, M., et al., MCUR1 facilitates epithelial-mesenchymal transition and metastasis via the mitochondrial calcium dependent ROS/Nrf2/Notch pathway in hepatocellular carcinoma. J Exp Clin Cancer Res, 2019. 38(1): p. 136.
9. Samimi, A., et al., The Dual Role of ROS in Hematological Malignancies: Stem Cell Protection and Cancer Cell Metastasis. Stem Cell Rev Rep, 2020. 16(2): p. 262-275.
10. Cichon, M.A. and D.C. Radisky, ROS-induced epithelial-mesenchymal transition in mammary epithelial cells is mediated by NF-kB-dependent activation of Snail. Oncotarget, 2014. 5(9): p. 2827-38.
11. Lim, S.O., et al., Epigenetic changes induced by reactive oxygen species in hepatocellular carcinoma: methylation of the E-cadherin promoter. Gastroenterology, 2008. 135(6): p. 2128-40, 2140.e1-8.
12. Micalizzi, D.S., S.M. Farabaugh, and H.L. Ford, Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression. J Mammary Gland Biol Neoplasia, 2010. 15(2): p. 117-34.
13. Zeisberg, M. and E.G. Neilson, Biomarkers for epithelial-mesenchymal transitions. J Clin Invest, 2009. 119(6): p. 1429-37.
14. Winkler, J., et al., Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat Commun, 2020. 11(1): p. 5120.
15. Fang, M., et al., Collagen as a double-edged sword in tumor progression. Tumour Biol, 2014. 35(4): p. 2871-82.
16. Zhu, G.G., et al., Immunohistochemical study of type I collagen and type I pN-collagen in benign and malignant ovarian neoplasms. Cancer, 1995. 75(4): p. 1010-7.
17. Huijbers, I.J., et al., A role for fibrillar collagen deposition and the collagen internalization receptor endo180 in glioma invasion. PLoS One, 2010. 5(3): p. e9808.
18. Januchowski, R., et al., Extracellular matrix proteins expression profiling in chemoresistant variants of the A2780 ovarian cancer cell line. Biomed Res Int, 2014. 2014: p. 365867.
19. Naba, A., et al., Extracellular matrix signatures of human mammary carcinoma identify novel metastasis promoters. Elife, 2014. 3: p. e01308.
20. Erler, J.T., et al., Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell, 2009. 15(1): p. 35-44.
21. Erler, J.T., et al., Lysyl oxidase is essential for hypoxia-induced metastasis. Nature, 2006. 440(7088): p. 1222-6.
22. Cawston, T.E. and D.A. Young, Proteinases involved in matrix turnover during cartilage and bone breakdown. Cell Tissue Res, 2010. 339(1): p. 221-35.
23. Itoh, Y. and H. Nagase, Matrix metalloproteinases in cancer. Essays Biochem, 2002. 38: p. 21-36.
24. Pinti, M., et al., Emerging role of Lon protease as a master regulator of mitochondrial functions. Biochim Biophys Acta, 2016. 1857(8): p. 1300-1306.
25. Jonas, K., et al., Proteotoxic stress induces a cell-cycle arrest by stimulating Lon to degrade the replication initiator DnaA. Cell, 2013. 154(3): p. 623-36.
26. Bota, D.A. and K.J. Davies, Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism. Nat Cell Biol, 2002. 4(9): p. 674-80.
27. Lu, B., et al., Phosphorylation of human TFAM in mitochondria impairs DNA binding and promotes degradation by the AAA+ Lon protease. Mol Cell, 2013. 49(1): p. 121-32.
28. Lu, B., et al., Roles for the human ATP-dependent Lon protease in mitochondrial DNA maintenance. J Biol Chem, 2007. 282(24): p. 17363-74.
29. Kao, T.Y., et al., Mitochondrial Lon regulates apoptosis through the association with Hsp60-mtHsp70 complex. Cell Death Dis, 2015. 6(2): p. e1642.
30. Bezawork-Geleta, A., et al., LON is the master protease that protects against protein aggregation in human mitochondria through direct degradation of misfolded proteins. Sci Rep, 2015. 5: p. 17397.
31. Ngo, J.K. and K.J. Davies, Mitochondrial Lon protease is a human stress protein. Free Radic Biol Med, 2009. 46(8): p. 1042-8.
32. Nie, X., et al., Down-regulating overexpressed human Lon in cervical cancer suppresses cell proliferation and bioenergetics. PLoS One, 2013. 8(11): p. e81084.
33. Gibellini, L., et al., Silencing of mitochondrial Lon protease deeply impairs mitochondrial proteome and function in colon cancer cells. Faseb j, 2014. 28(12): p. 5122-35.
34. Quiros, P.M., et al., ATP-dependent Lon protease controls tumor bioenergetics by reprogramming mitochondrial activity. Cell Rep, 2014. 8(2): p. 542-56.
35. Cheng, C.W., et al., Overexpression of Lon contributes to survival and aggressive phenotype of cancer cells through mitochondrial complex I-mediated generation of reactive oxygen species. Cell Death Dis, 2013. 4(6): p. e681.
36. Kuo, C.L., et al., Mitochondrial oxidative stress by Lon-PYCR1 maintains an immunosuppressive tumor microenvironment that promotes cancer progression and metastasis. Cancer Lett, 2020. 474: p. 138-150.
37. Liu, Y., et al., Inhibition of Lon blocks cell proliferation, enhances chemosensitivity by promoting apoptosis and decreases cellular bioenergetics of bladder cancer: potential roles of Lon as a prognostic marker and therapeutic target in baldder cancer. Oncotarget, 2014. 5(22): p. 11209-24.
38. Phang, J.M., The regulatory functions of proline and pyrroline-5-carboxylic acid. Curr Top Cell Regul, 1985. 25: p. 91-132.
39. Donald, S.P., et al., Proline oxidase, encoded by p53-induced gene-6, catalyzes the generation of proline-dependent reactive oxygen species. Cancer Res, 2001. 61(5): p. 1810-5.
40. Krishnan, N., M.B. Dickman, and D.F. Becker, Proline modulates the intracellular redox environment and protects mammalian cells against oxidative stress. Free Radic Biol Med, 2008. 44(4): p. 671-81.
41. Liu, W., et al., Proline biosynthesis augments tumor cell growth and aerobic glycolysis: involvement of pyridine nucleotides. Sci Rep, 2015. 5: p. 17206.
42. Hollinshead, K.E.R., et al., Oncogenic IDH1 Mutations Promote Enhanced Proline Synthesis through PYCR1 to Support the Maintenance of Mitochondrial Redox Homeostasis. Cell Rep, 2018. 22(12): p. 3107-3114.
43. Liu, W., et al., Reprogramming of proline and glutamine metabolism contributes to the proliferative and metabolic responses regulated by oncogenic transcription factor c-MYC. Proc Natl Acad Sci U S A, 2012. 109(23): p. 8983-8.
44. Zeng, T., et al., Knockdown of PYCR1 inhibits cell proliferation and colony formation via cell cycle arrest and apoptosis in prostate cancer. Med Oncol, 2017. 34(2): p. 27.
45. Reversade, B., et al., Mutations in PYCR1 cause cutis laxa with progeroid features. Nat Genet, 2009. 41(9): p. 1016-21.
46. Kretz, R., et al., Defect in proline synthesis: pyrroline-5-carboxylate reductase 1 deficiency leads to a complex clinical phenotype with collagen and elastin abnormalities. J Inherit Metab Dis, 2011. 34(3): p. 731-9.
47. Eble, J.A. and S. Niland, The extracellular matrix in tumor progression and metastasis. Clin Exp Metastasis, 2019. 36(3): p. 171-198.
48. Riegler, J., et al., Tumor Elastography and Its Association with Collagen and the Tumor Microenvironment. Clin Cancer Res, 2018. 24(18): p. 4455-4467.
49. Barcus, C.E., et al., Stiff collagen matrices increase tumorigenic prolactin signaling in breast cancer cells. J Biol Chem, 2013. 288(18): p. 12722-32.
50. Wang, H.M., et al., Obtusilactone A and (-)-sesamin induce apoptosis in human lung cancer cells by inhibiting mitochondrial Lon protease and activating DNA damage checkpoints. Cancer Sci, 2010. 101(12): p. 2612-20.
51. Kuo, M.L., et al., PYCR1 and PYCR2 Interact and Collaborate with RRM2B to Protect Cells from Overt Oxidative Stress. Sci Rep, 2016. 6: p. 18846.
52. Stein, L.R. and S. Imai, The dynamic regulation of NAD metabolism in mitochondria. Trends Endocrinol Metab, 2012. 23(9): p. 420-8.
53. Guo, L., et al., Kindlin-2 links mechano-environment to proline synthesis and tumor growth. Nat Commun, 2019. 10(1): p. 845.
54. Ohlund, D., et al., Type IV collagen is a tumour stroma-derived biomarker for pancreas cancer. Br J Cancer, 2009. 101(1): p. 91-7.
55. Fang, S., et al., Clinical significance and biological role of cancer-derived Type I collagen in lung and esophageal cancers. Thorac Cancer, 2019. 10(2): p. 277-288.
56. Li, H.X., et al., Expression of αvβ6 integrin and collagen fibre in oral squamous cell carcinoma: association with clinical outcomes and prognostic implications. J Oral Pathol Med, 2013. 42(7): p. 547-56.
57. Bandyopadhyay, A. and S. Raghavan, Defining the role of integrin alphavbeta6 in cancer. Curr Drug Targets, 2009. 10(7): p. 645-52.
58. Quirós, P.M., et al., ATP-dependent Lon protease controls tumor bioenergetics by reprogramming mitochondrial activity. Cell reports, 2014. 8(2): p. 542-556.
59. Pindborg, J.J., et al., Oral submucous fibrosis as a precancerous condition. Scand J Dent Res, 1984. 92(3): p. 224-9.
60. Phang, J.M. and W. Liu, Proline metabolism and cancer. Front Biosci (Landmark Ed), 2012. 17: p. 1835-45.
61. Montanez, E., et al., Kindlin-2 controls bidirectional signaling of integrins. Genes Dev, 2008. 22(10): p. 1325-30.