研究生: |
蕭宇成 Hsiao, Yu-Cheng |
---|---|
論文名稱: |
氫分子離子佈植技術於製作不同晶向的絕緣體上矽材料之比較研究 |
指導教授: |
梁正宏
Liang, Jenq-Horng |
口試委員: |
梁正宏
蔡銘進 葉宗洸 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 98 |
中文關鍵詞: | 絕緣體上矽材料 、氫分子離子佈植 、離子劈裂技術 、矽晶向 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究係探討利用氫分子離子佈植技術佈植於不同晶向之矽 <100> 、 <111> 與 <110> 的矽晶圓中,以離子劈裂法,成功製作出不同晶向絕緣體上矽材料的尖端研究。本論文實驗細分為兩大部分,第一部分先透過光學顯微鏡,以動態與靜態兩種方式,觀察比較不同晶向之佈植試片在退火處理的過程中,試片表面發泡與發泡破裂行為隨不同退火溫度與不同退火時間的變化情形與差異,之後在輔以二次離子質譜儀、拉曼光譜儀以及橫截面穿透式電子顯微鏡等特性儀器,針對不同晶向之佈植試片內部佈植缺陷的演化情形進行深入地探討。並綜合各種儀器的分析結果找出矽 <100> 、 <111> 與 <110> 之不同晶向的矽晶圓適合用來製作絕緣體上矽材料的退火條件後,接續著進行本論文實驗之第二部分。第二部分實驗則是經由離子劈裂法標準製程,製作出不同晶向的絕緣體上矽材料,之後再以光學顯微鏡、原子力顯微鏡和橫截面穿透式電子顯微鏡分別進行絕緣體上矽材料表面轉移矽薄膜之表面形貌、表面粗糙度與離子劈裂厚度的量測分析。根據研究的結果顯示:(一)、矽 <100> 、 <111> 與 <110> 佈植試片的表面發泡破裂行為的產生需要經過一成核與成長的過程。此外,更進一步發現矽晶圓的平面密度會影響平板缺陷的成核;而平面間距與其表面能會影響平板缺陷的成長。(二)、不同矽晶向之佈植試片在退火處理的過程中,其表面發泡與發泡破裂個數、平均直徑與百分比差異皆與晶向息息相關。(三)、各晶向佈植試片在退火處理的過程中,隨著退火溫度的升高,會有氫原子受陷的情形發生,此即意味著當退火溫度達到某一特定溫度時,佈植試片內部會有一穩定之缺陷存在,推論此缺陷為一穩定之微裂縫結構。(四)、要成功製作出絕緣體上矽材料,退火條件必須在表面發泡破裂臨界溫度左右才能使矽薄膜成功轉移,但也不能在太高溫,因為在高溫退火時,會造成間隙矽原子的修復與移除以及氫氣大量往試片表面逸散,將會使得微裂縫無法更進一步地擴張,且所製作出的不同晶向絕緣體上矽材料表面轉移矽薄膜擁有不同的表面粗糙度,也與晶向有關。
his study attempted to investigate the silicon orientation effects on fabricating orientation dependent Silicon On Insulator materials by using smart cut technique. Si<100>, Si<111>, and Si<110> wafers were employed and implanted with molecular hydrogen ions (H2+) with a kinetic energy level of 200 keV and molecular ion fluence of 2.5×1016 cm-2. Following implantation, the experimental details are divided into two parts, the one is using optical microscopy (OM), raman scattering spectroscopy (RSS), secondary ion mass spectrometry (SIMS) and cross section transmission electron microscopy (XTEM) to probe the specimens’ surface blistering and exfoliation behaviors, the evolution of radiation damage, hydrogen trapping depth and the micro structure of radiation damage after annealing, respectively. In addition, the another part is using smart cut technique fabricating difference orientation SOI materials and analysis the transferential silicon thin film quality by OM, AFM, and XTEM. The results revealed that surface blistering and exfoliation behaviors are mainly due to a combination of nucleation and growth process of hydrogen bubbles. The nucleation process is strongly dependent on the silicon areal number density, while the growth process is dominated by the silicon intra-planar spacing and surface free energy. Also, the areal number density, mean diameter and fractions of blisters and craters are depended on silicon orientation. This phenomenon is further validated by the ratio of the VH3 (or V2H6) defect complex phase to the Si:H bonding configuration phase given in the OM results. Moreover, the SIMS results indicated that the hydrogen trapping depth in specimen surface is closely to the depth of wafer cleavage when fabricating silicon-on-insulator (SOI) materials. Finally, this study has shown that the most optimal post-annealing temperature is nearly the exfoliation temperature, and the quality of the transferential silicon thin film is also strongly depend on silicon orientation.
[1] M. Bruel, Electron. Lett. 31 (1995) 1201.
[2] 吳志宏、劉丙寅、賴文郎、張嘉福、葉性銓,機械工業雜誌 257 期,93頁。
[3] D. Kahng, IEEE Trans. Electron. Device 23 (1976) 655.
[4] A. Plobl, G. Krauter, Soloid-State Electron. 44 (2000) 775.
[5] 施敏,半導體元件物理與製作技術,第二版,交大出版社,新竹,中華民國九十一年。
[6] http://zh.wikipedia.org/zh-tw/SOI
[7] http://www.soitec.com
[8] T. Hochbauer, Marburg University, Ph.D. Dissertation, 10 (2001)
[9] L.J. Huang, Q.Y. Tong, Y.L. Chao, T.H. Lee, Appl. Phys. Lett. 74 (1999) 982.
[10] J. Grisolia, G.B. Assayag, A. Claverie, B. Aspar, C. Lagahe, L. Laanab, Appl. Phys. Lett. 76 (2000) 852.
[11] Wang, L. S., S. Tripathy, et al. (2005). "InGaN/GaN multi-quantum-well structures on (111)-oriented bonded silicon-on-insulator substrates." Applied Physics Letters 87(11).
[12] Mizuno, T., N. Sugiyama, et al. (2005). "(110)-surface strained-SOI CMOS devices." Ieee Transactions on Electron Devices 52(3): 367-374.
[13] C.L. Blanchard, N. Sousbie, S. Sartori, H. Moriceau, A. Sousbie, B. Aspar, P. Nguyen, B. Blondeau, Proceedings on the Semiconductor Wafer Bonding VII: Science, Technology, and Application, Paris, France, PV 2003-19 (2003) 346.
[14] The Path to Conception of The Junction Trasistor, IEEE Transations on Electron Devices, 23 (1976) 597.
[15] H.J. Woo, H.W. Choi, J.K. Kim, G.D. Kim, W. Hong, W.B. Choi and Y.H. Baec, Nucl. Instr. and Meth. B, 241 (2005) 531.
[16] P. Nguyen, I. Cayrefourcq, B. Blondeau, N. Sousbie, C. L. Blanchard, S. Sartori, A.M. Cartier, Proceedings of the 2003 IEEE Int. SOI Conf., Newport Beach, CA, 29 (2003) 132.
[17] L. Jastrzebski, J.F. Corboy, J.T. McGinn, and R. Pagliaro, Jr., J. Electrochem. Soc.:SOLID-STATE SCIENCE AND TECHNOLOGY, 130 (1983) 1571.
[18] R.P. Zingg, H.G. Graf, W. Appel, P. Vohringer and B. Hofflinger, Institute for Microelectronics (1988) 52.
[19] J.P. Denton and G.W. Neudeck, Proceedings IEEE Int. SOI Conf. (1995) 135.
[20] J.C. Chang, J.P. Denton, and G.W. Neudeck, Proceedings IEEE Int. SOI Conf. (1996) 88.
[21] M. Watanabe and A. Tooi, Japan. J.Appl. Phys, 5 (1966) 737.
[22] K. Izumi, M. Doken, H. Ariyoshi, Electron. Lett. 14 (1978) 593.
[23] S. Nakoshima, T. Katayama, Y. Miyamura, H. Matsuzaki, M. Imai, et al., in Proc. IEEE Int. SOI Conf., Nantucket, MA, 71 (1994).
[24] T. Yonehara, K. Sakaguchi, and N. Sato, Appl. Phys. Lett., 64 (1994)
[25] SOI wafers based on eptaxial technology, Solid state technology ,June (2000) 88.
[26] K. Sakaguchi, K. Yanagita, H. Kurisu, H. Suzuki, K. Ohmi and T.Yonehara, IEEE International SOI Conference, (1999) 110.
[27] Jean-Pierre Colinge, Silicon On Insulator Technology : Materil to VLSI,(2004).
[28] J. F. Ziegler, J. P. Biersack and U. Littmask, Stopping and Range of ions in Solids, 1, Pergamon Press(1985).
[29] 王孟亮,「拉曼小傳」,科學月刊,167 期,中華民國七十二年,958 頁。
[30] Z.C. Feng, A.A. Allerman, P.A. Barnes, S. Perkowitz, Appl. Phys. Lett. 60 (1992) 1848.
[31] J.P. Estrera, P.D. Stevens, R. Glosser, W.M. Duncan, Y.C. Kao, Y.H. Liu, E.A. Beam, Appl. Phys. Lett. 61 (1992) 1927.
[32] G. Lucovsky, M.H. Brodsky, M.F. Chen, R.J. Chicotka, A.T. Ward, Phys. Rev. B 4 (1971) 1945.
[33] K.J. Yano, T. Katoda, J. Appl. Phys. 70 (1991) 7036.
[34] D.P. Bour, J.R. Shealy, A. Ksendzov, F. Pollak, J. Appl. Phys. 64 (1988) 6456.
[35] 蘇青森,儀器學,五南圖書出版股份有限公司,中華民國九十一年,76頁。
[36] G.E. Jellison, Jr., F.A. Modine, J. Appl. Phys. 76 (1994) 3758.
[37] A. Benninghoven, F.G. Rudenauer, H.W. Werner, Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, applications and Trends,John Wiley & Sons (1987) 950.
[38] 陳力俊、張立、梁鉅銘、林文台、楊哲人、鄭晃忠,材料電子顯微鏡學,科儀叢書3,國家科學委員會精密儀器發展中心,中華民國八十三年。
[39] Q.Y. Tong, K. Gutjahr, S. Hopfe, U. Gosele, T.H. Lee, Appl. Phys. Lett. 70 (1997) 1390.
[40] M.K. Weldon, V.E. Marsico, Y.J. Chabal, A. Agarwal, D.J. Eaglesham, J. Sapjeta, W.L. Brown, D.C. Jacobson, Y. Caudano, S.B. Christman, E.E. Chaban, J. Vac. Sci. Technol. B15 (1997) 1065.
[41] T.H. Lee, Q.Y. Tong, Y.L. Chao, L.J. Huang, U. Gosele, Electrochem. Soc. Proc. 97-23 (1997) 27.
[42] R. E. Reed-Hill, R. Abbaschian, Physical metallurgy 3rd edition, PWS-Kent Pub, Boston(1992).
[43] Y. Zheng, S. S. Lau, T. Hochbauer, A. Misra, R. Verda, X. M. He, M. Nastasi, and J. W. Mayer, J. Appl. Phys. 89, 2972(2001).
[44] M.K. Weldon, M. Collot, Y.J. Chabal, V.C. Venezia, A. Agarwal, T.E. Haynes, D.J. Eaglesham, S.B. Christman, E.E. Chaban, Appl. Phys. Lett. 73 (1998) 3721.
[45] F.A. Reboredo, M. Ferconi, and S.T. Pantelides, Phys. Rev. Lett. 82 (1999) 4870.
[46] T. Hochbauer, A. Misra, R. Verda, Y. Zheng, S.S. Lau, J.W. Mayer, and M. Nastasi, Nucl. Instr. Meth. B175-177 (2001) 169.
[47] X. Duo, W. Liu, M. Zhang, L. Wang, C. Lin, M. Okuyama, M. Noda,W. Y. Cheung, P. K. Chu, P. Hu, S. X. Wang, L. M. Wang, J. Phys. D: Appl. Phys. 34(2001)477.
[48] Y. Zheng, S.S. Lau, T. Hochbauer, A. Misra, R. Verda, X.M. He, M. Nastasi, J.W. Mayer, J. Appl. Phys. 89 (2001) 2972.
[49] M. Bruel, The History, Physics, and Applications of the Smart-Cut (R) Process, 23, Materials Research Society Bulletin, United States (1998) 35.
[50] Moutanabbir, and B. Terreault, J. Chem. Phys. 121 (2004) 7973.
[51] B.B. Nielsen, L. Hoffmann, and M. Budde, Mater. Sci. Eng. B36 (1996) 259.
[52] H.J. Stein, S.M. Myers, and D.M. Follstaedt, J. Appl. Phys. 73 (1993) 2755.
[53] R. Job, A.G. Ulyashin, W.R. Fahrner, A.I. Ivanov, and L. Palmetshofer, Appl. Phys. A72 (2001) 325.
[54] S.M. Myers, D.M. Follstaedt, H.J. Stein, and W.R. Wampler, Phys. Rev. B47 (1993) 13380.
[55] Y.J. Chabal, M.K. Weldon, Y. Caudano, B.B. Stefanov, and K. Raghvachari, Physica B273 (1999) 152.
[56] O. Moutanabbir, B. Terreault, M. Chicoinec, P.J. Simpsond, T. Zahele, and G. Hobler, Physica B376 (2006)
[57] S. Personnic, K. K. Bourdelle, F. Letertre, A. Tauzin, N. Cherkashin, A. Claverie, R. Fortunier, and H. Klocker, J. Appl. Phys. 103, 023508 (2008).
[58] J.H. Liang, C.Y. Bai, D.S. Chao, C.M. Lin, Nucl. Instr. Meth. B266 (2008) 1349-1355.
[59] J.H. Liang, C.Y. Bai, D.S. Chao, C.M. Lin, Nucl. Instr. Meth. B266 (2008) 1562-1568.