研究生: |
李承育 Li, Cheng-Yu |
---|---|
論文名稱: |
光觸媒氧化鋯被覆對304不鏽鋼在高溫純水環境之防蝕效益研究 Influence of Ultraviolet Radiation on the Corrosion Behavior of ZrO2-treated Type 304 Stainless Steel in High Temperature Pure Water |
指導教授: | 葉宗洸 |
口試委員: |
葉宗洸
黃俊源 歐陽汎怡 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 136 |
中文關鍵詞: | 沸水式反應器 、304不鏽鋼 、氧化鋯 、熱水沉積法 、Cherenkov Radiation |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
沿晶應力腐蝕龜裂(Intergranular Stress Corrosion Cracking, IGSCC)是沸水式反應器中常見的材料老化劣化問題之一。根據文獻資料與實務經驗,若將不鏽鋼管件之電化學腐蝕電位(Electrochemical Corrosion Potential, ECP)控制在低於 -230 mVSHE,則能有效抑制沿晶應力腐蝕龜裂的發生。目前抑制IGSCC的技術只要以加氫水化學(Hydrogen Water Chemistry, HWC)搭配催化性被覆的貴重金屬添加(Noble Metal Chemical Addition, NMCA)為主,尚有以氧化鈦、氧化鋯等抑制性被覆技術(Inhibitive Protective Coating, IPC)。
本研究以氧化鋯做為研究對象,藉由動態熱水沉積法被覆在304不鏽鋼試片表面,來評估被覆試片在高溫純水環境下之防蝕效益,並且使用UV光來模擬反應爐中特有的Cherenkov Radiation環境,藉以激發氧化鋯n型半導體特性,來加強氧化鋯之防蝕效益。根據研究結果顯示,經過氧化鋯被覆處理之試片其ECP會略高於未被覆處理之試片,但卻能有效降低腐蝕電流;被覆試片在UV光照射的條件下,能夠激發氧化鋯n型半導體特性,產生光電流來降低被覆試片之腐蝕電位,更能進一步降低被覆試片本身的腐蝕電流。
1. Kim, Y.J., Protective Insulated Coating for SCC Mitigation in BWRs, in 15th International Conference on Environmental Degradation of Materials in Nuclear Power Systems2011: Colorado, USA.
2. Fujishima, A., K. Honda, and S. Kikuchi, Journal of the Chemical Society of Japan, 1969. 72: p. 108.
3. Barberis, P., T. Merle-Mejean, and P. Quintard, On Raman Spectroscopy of Zirconium Oxide Films. Journal of Nuclear Materials, 1997. 246: p. 232-243.
4. Andresen, P., Emerging Issues and Fundamental Processes in Environmental Cracking in Hot Water, in National Association of Corrosion Engineers2007, NACE International: Nashville, Tennessee.
5. Ono, S., M. Miyano, and K. Fujisawa, Investigation of ceramic coated stainless steel by scanning electrochemical microscope under gamma-ray irradiation, in International Symposium on Mechanism and Application of Radiation Induced Surface Activation2005: Tokyo, Japan.
6. Simonen, F.A. and S.R. Gosselin, Life Prediction and Monitoring of Nuclear Power Plant Components for Service-Related Degradation. Journal of Pressure Vessel Technology, 2001. 123: p. 56-64.
7. Sugama, J., S. Uchida, and N. Yamashiro, Effects of Hydrogen Peroxide on Corrosion of Stainless Steel, (II) Evaluation of Oxide Film Properties by Complex Impedance Measurement. Journal of Nuclear Science and Technology, 2004. 41: p. 880-889.
8. Jayaweera, P., S. Hettiarachchi, and H. Ocken, Determination of High Temperature Zeta Potential and pH of Zero Charge of Some Transition Metal Oxides. Colloids and Surface A: Physicochemical and Engineering Aspects, 1994. 85: p. 19-27.
9. Okamura, M., T. Osato, and N. Ichikawa, Corrosion Mitigation of BWR Structural Materials by the Photoelectric Method with TiO2-Laboratory Experiments of TiO2 Effect on ECP Behavior and Materials Intergity, in Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power System-Water Reactors_2005. p. 745-752.
10. Miyazawa, T., T. Terachi, and S. Uchida, Effects of Hydrogen Peroxide on Corrosion of Stainless Steel, (V) Characterization of Oxide Film with Multilateral Surface Analyses. Journal of Nuclear Science and Technology, 2006. 43(8): p. 884-895.
11. Miyazawa, T., S. Uchida, and T. Satoh, Effects of Hydrogen Peroxide on Corrosion of Stainless Steel, (IV) Determination of Oxide Film Properties with Multilateral Surface Analyses. Journal of Nuclear Science and Technology, 2005. 42(2): p. 233-241.
12. Uchida, S., T. Satoh, and J. Sugama, Effects of Hydrogen Peroxide on Corrosion of Stainless Steel, (III) Evaluation of Electric Resistance of Oxide Film by Equivalent Circuit Analysis for Frequency Dependent Complex Impedances. Journal of Nuclear Science and Technology, 2005. 42: p. 66-74.
13. Uchida, S., Y. Morishima, and T. Hirose, Effects of Hydrogen Peroxide on Corrosion of Stainless Steel (VI) Effects of Hydrogen Peroxide and Oxygen on Anodic Polarization Properties of Stainless Steel in High Temperature Pure Water. Journal of Nuclear Science and Technology, 2007. 44: p. 758-766.
14. Murayama, Y., T. Satoh, and S. Uchida, Effects of Hydrogen Peroxide on Intergranular Stress Corrosion Cracking of Stainless Steel in High Temperature Water, (V). Journal of Nuclear Science and Technology, 2002. 39: p. 1199-1206.
15. 經濟部能源局, 能源產業經濟白皮書, 經濟部, Editor 2012.
16. 台灣電力公司. 福島核災事件後各國核能發展趨勢. 2012; Available from: http://wapp4.taipower.com.tw/nsis/prj01_2.htm.
17. Garcia, S.E., J.F. Giannelli, and M.L. Jarvis, Advances in BWR Water Chemistry, in Nuclear Plant Chemistry2012: Paris, France.
18. Andresen, P.L., Factors Governing the Prediction of LWR Component SCC Behavior From Laboratory Data, in National Association of Corrosion Engineers1999, NACE Interantional: San Antonio, Tx.
19. Jr., W.D.C., Materials Science and Engineering - An Introduction, 5th Edition. 1999.
20. Chung, P.C.-K., Quantitative Study of the Degree of Sensitization of Austenitic Stainless Steel by Electrochemical Measurements. 1979: Ohio State University.
21. Busby, J.T., G.S. Was, and E.A. Kenik, Isolating the effect of radiation-induced segregation in irradiation-assisted stress corrosion cracking of austenitic stainless steels. Journal of Nuclear Materials, 2002. 302(1): p. 20-40.
22. Wilde, B.E., Stress Corrosion Cracking. Vol. Failure Analysis and Prevention. 1986: American Society for Metals. 203.
23. Uhlig, H.H. and R.W. Revie, Corrosion and corrosion control, ed. 3. 1985.
24. Ford, P., Development and Use of a Predictive Model of Crack Propagation in 304/316L, A533B/A508 and Inconel 600/182 Alloys in 288oC water, in Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors1988.
25. Ford, P., Stress Corrosion Cracking of Low Alloy Steels Under BWR Conditions; Assessment of CHR Algorithms, in International Symposium on Environment Degradation of Materials in Nuclear Power Systems-Water Reactors1999.
26. Angeliu, T.M., P.L. Andresen, and F.P. Ford, Apolying Slip-Oxidation to the SCC of Austenitic Materials in BWR/PWR Environments in National Association of Corrosion Engineers1998, NACE International: San Diego Ca.
27. Ford, F. and P. Andresen, Corrosion in Nuclear Systems: Environment Assisted Cracking in Light Water Reactors, 1994: New York. p. 501-546.
28. Kazushige, I., W. Yoichi, and T. Masahiko, Hydrazine and Hydrogen Co-injection to Mitigate Stress Corrosion Cracking of Structural Materials in Boiling Water Reactors, (II) Reactivity of Hydrazine with Oxidant in High Temperature Water under Gamma-irradiation. Journal of Nucler Science and Technology, 2006.
29. Macdonald, D., Viability of Hydrogen Water Chemistry fro Protecting In-Vessel Components of Boiling Water Reactors. Corrosion, 1992. 48.
30. Macdonald, D., Theoretical Estimation of Crack Growth Rates in Type 304 Stainless Steel in Boiling-Water Reactor Coolant Environment. Corrosion, 1996. 52.
31. Kaesche, H., Die Korrosion der Metalle physikalisch-chemische Prinzipien und aktuelle Probleme. 1990: Springer.
32. Winkler, R., F. Huttner, and F. Michel, Senkung der Korrosionsrate im Primarkreislauf von Druckwasserreaktoren zur Begrenzung radioaktiver Ablagerungen. VGB Kraftwerkstechnik, 1989. 69: p. 524-531.
33. Winkler, R., H. Lehmann, and F. Michel, VGB Kraftwerkstechnik, 1989. 69: p. 527-531.
34. Asakura, Y., et al., Relationships Between Corrosion Behavior of AISI 304 Stainless Steel in High-Temperature Water and Its Oxide Film Structure. Corrosion, 1989. 45: p. 119-124.
35. Kim, Y.J., Analysis of Oxide Film Formed on Type 304 Stainless Steel in 288oC Water Containing Oxygen, Hydrogen, and Hydrogen Peroxide. Corrosion, 1999. 55.
36. Kim, Y.J., Effect of Water Chemistry on Corrosion Behavior of 304 SS in 288℃ Water, in International Water Chemistry Conference2004: San Francisco.
37. Stellwag, B., The Mechanism of Oxide Film Formation on Austenitic Satinless Steels in High Temperature Water. Corrosion Science, 1998. 40: p. 337-370.
38. Lister, D.H., R.D. Davison, and E. McAlpine, The mechanism and kinetics of corrosion product release from stainless steel in lithiated high temperature water. Corrosion Science, 1987. 27: p. 113-140.
39. Leistikow, S. and R. Kraft, Verbesserung der Heißdampf-Korrosionsbeständigkeit von Incoloy Alloy 800-Rohrmaterial durch verformende Oberflächenvorbehandlungen. Werkstoffe und Korrosion, 1974. 25(1): p. 12-25.
40. Robertson, J., The mechanism of high temperature aqueous corrosion of steel Corrosion Science, 1989. 29: p. 1275-1291.
41. Winkler, R. and H. Lehmann, Zur Qualitätsbewertung oxidischer Korrosionsschutzschichten. VGB Kraftwerkstechnik, 1985. 65: p. 421-426.
42. Lin, C.C., F.R. Smith, and R.L. Cowan, Effects of Hydrogen Water Chemistry on Radiation Field Buildup in BWRs. Nuclear Engineering and Design, 1996. 166: p. 31-36.
43. Cheng, Y.F. and F.R. Steward, Corrosion of carbon steels in high-temperature water studied by electrochemical techniques. Corrosion Science, 2004. 46: p. 2405-2420.
44. Kumai, C.S. and T.M. Devine, Oxidation of Iron in 288°C, Oxygen-Containing Water. Corrsion, 2005. 61: p. 201-218.
45. Taylor, D.F., Corrosion, 1979. 35: p. 550-.
46. Beverskog, B. and I. Puigdomenech, Pourbaix Diagrams for the Ternary System of Iron-Chromium-Nickel. Corrosion, 1999. 55: p. 1077-1087.
47. Wada, Y., A. Watanabe, and M. Tachibana, Effects of Hydrogen Peroxide on Intergranular Stress Corrosion Cracking of Stainless Steel in High Tmeperature Water, (IV) Effects of Oxide Film on Electrochemical Corrosion Potential. Jounal of Nuclear Science and Technology, 2001. 38: p. 183-192.
48. Kim, Y.J., In-Situ Electrochemical Impedance Measurement of Oxide Film Formed on Type 304 Stainless Steel in High-Temperature Water. Corrosion, 2000. 56: p. 389-394.
49. Pathania, P., Zirconium Oxide Deposition to Mitigate IGSCC, in BWRVIP Mitigation Committee Meeting1997: Atlanta.
50. Ganguli, D. and D. Kundu, Preparation of Amorphous ZrO2 Coatings from Metal-Organic Solutions. Journal of Materials Science Letters, 1984. 3: p. 503-504.
51. Kim, Y.J. and P.L. Andresen, Application of Insulated Protective Coatings for Reduction of Corrosion Potential of Type 304 Stainless Steel in High-Temperature Water. Corrosion, 1998. 54: p. 1012-1017.
52. Zhou, X., I. Balachov, and D.D. MaDonald, The Effect of Dielectric Coatings on IGSCC in Sensitized Type 304SS in High Temperature Dilute Sodium Sulfate Solution. Corrosion Science, 1998. 40: p. 1349-1362.
53. Zhou, Z.F., E. Chalkova, and S.N. Lvov, Development of a hydrothermal deposition process for applying zirconia coatings on BWR materials for IGSCC mitigation. Corrosion Science, 2007. 49: p. 830-843.
54. Yeh, T.K., M.Y. Lee, and C.H. Tsai, Intergranular Stress Corrosion Cracking of Type 304 Stainless Steels Treated with Inhibitive Chemicals in Simulated Boiling Water Reactor Environments. Journal of Nuclear Science and Technology, 2002. 39: p. 531-539.
55. Yeh, T.K., C.T. Liu, and C.H. Tsai, The Influence of ZrO2 Treatment on the Electrochemical Behavior of Oxygen and Hydrogen on Type 304 Stainless Steels in High Temperature Water. Journal of Nuclear Science and Technology, 2005. 42: p. 809-815.
56. Yeh, T.K., C.H. Tsai, and Y.H. Cheng, The Influence of Dissolved Hydrogen on the Corrosion of Type 304 Stainless Steels Treated with Inhibitive Chemicals in High Temperature Pure Water. Journal of Nuclear Science and Technology, 2005. 42: p. 462-469.
57. Yeh, T.K., Y.C. Chien, and B.Y. Wang, Electrochemical Characteristics of Zirconium Oxide Treated Type 304 Stainless Steels of Different Surface Oxide Structures in High Temperature Water. Corrosion Science, 2008. 50: p. 2327-2337.
58. Atik, M. and M.A. Aegerter, Corrosion resistant sol-gel ZrO2 coatings on Stainless Steel. Journal of Non-Crystalline Solids, 1992. 147&148: p. 813-819.
59. Zhou, Z.F., Optimization of Zirconium Oxide Coating Technology to Mitigate IGSCC in BWRs, in BWRVIP Mitigation Committee Meeting2002.
60. Stellwag, B. and R. Kilian, Investigations into Chemistry-Related Alternatives to Hydrogen Water Chemistry in BWR Plants, in International Workshop on LWR Cooloant Water Radiolysis & Electrochemistry2000.
61. Hunter, R.J., Zeta Potential in Colloid Science : Principles and Applications. 1988: Academic Press.
62. Fujishima, A. and K. Honda, in Nature1972. p. 37.
63. Manicone, P.F., P.R. Iommetti, and L. Raffaelli, An Overview of Zirconia Ceramics: Basic Properties and Clinical Applications. Journal of Dentistry, 2007. 35: p. 819-826.
64. Niinlsto, L., J. palvasaari, and J. Niinisto, Advanced electronic and optoelectronic materials by Atomic Layer Deposition: An overview with special emphasis on recent progress in processing of high-k dielectrics and other oxide materials. Physica status solidi, 2004. 201: p. 1443-1452.
65. Ono, S., M. Miyano, and M. Hishida, ECP decrease of ceramic coated stainless steel by Radiation Induced Surface Activation, in International Symposium on Mechanism and Application of Radiation Induced Surface Activation2005: Tokyo, Japan.
66. Varela, J.A., E.W. Davis, and T.A. Caine, Plant Chemistry Response to On-Line NobleChem, in Nuclear Plant Chemistry2012: Paris, France.
67. Garcia, S.E., A.D. Odell, and J.F. Giannelli, Early Hydrogen Water Chemistry in the Boiling Water Reactor: Industry-First Demonstration, in Nuclear Plant Chemistry Conference2012: Paris, France.
68. Abe, A. and H. Tobita, Mitigation of SCC Initation on BWR Core Internals by Means of Hydrogen Water Chemistry During Start-up. Nuclear Science and Engeering, 2005. 149: p. 312-324.
69. Stellwag, B., M. Pop, and B. Devrient, Effect of UV Irradiation on Low Concentration Methanol Solution in BWR Condition Loop Testing, in Nuclear Plant Chemistry2012: Paris, France.