簡易檢索 / 詳目顯示

研究生: 賴凱弘
LAI, KAI-HONG
論文名稱: 以混合法探討彈性支撐含孔構件之振動行為
Investigation of Vibration Behavior of Perforated Components on Elastic Supports by the Hybrid Method
指導教授: 王偉中
WANG, WEI-CHUNG
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2002
畢業學年度: 90
語文別: 英文
論文頁數: 183
中文關鍵詞: 多孔板殼彈性支撐混合法電子光斑影像干涉術參數調整模態可信度準則
外文關鍵詞: Perforated plates and shells, Elastic support, Hybrid method, AF-ESPI, Parameter tuning, MAC
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,由於多媒體電腦的演進,使得電腦的附加功能愈趨多樣化,也因此使得電腦及其周邊裝置面臨了振動及散熱的問題。為了美觀,一般多媒體電腦業者常將原安裝於螢幕兩側的喇叭安裝於電腦外殼之內,當喇叭運作時會形成振動源,而位於螢幕內的蔭罩(Shadow Mask)則直接受到此一振動源的影響,使得陰極射線管所放出之電子束無法正確的通過蔭罩上的孔,有時候讓螢幕畫面產生影像不穩定的現象,使得使用者必須忍受畫面的微振。另外,由於資訊的發展,常可見電子構件如印刷電路板或球陣列排列元件使用於行動物體上,這些彈性支撐的元件經常處於週期振動的環境中,情況嚴重時可能會使元件失效,因此這些元件的可靠度相形之下就顯得重要。此外,在許多薄板及薄殼結構的接合上,由於邊界條件較為複雜,並非一般簡支撐或固定之條件,而是介於兩者之間的一種條件,但簡支撐與固定究竟各是多少比例卻是無法知道,較常見的方式多採用有限元素法來預測系統的靜、動態行為,但是邊界條件卻不易掌握。綜合以上種種不確定之因素,可以發現數值模擬往往會和真實情況有一定的差距。因此本研究的重點將分為幾個部分來探討含孔洞結構在不同的邊界條件下的機械行為及承受負載時的動態行為。實驗方法可以將邊界及材料的性質完全顯現出來,但如果每一種情況都必須重新設計實驗,將會非常耗時,所以若結合實驗模型與ANSYS[1]數值模型,確實掌握實驗的等效材料常數及邊界條件,而後將所得到的參數代入數值方法中,以模擬真實的條件,期望以此種方法可以預測不同情況下結構的靜、動態特性。對於一般含孔、裂縫之構件甚至於複合材料同樣的都可藉由此一方式獲得等效於等向性或正交性(orthotropic)完整平板的材料常數,對於簡化數值模型有很大的幫助,而在獲得試片的材料常數及邊界條件之後,除了對振動分析有相當的幫助外,也可以對於許多延伸的問題作一探討。


    For the connection parts of engineering structures, the actual boundary conditions lie between the ideal simply-supported and clamped conditions. It is difficult, however, to define the boundary conditions clearly. In addition, material properties of many structures, e.g. perforated plates, are rather difficult to determine.
    In this dissertation, dynamic behaviors of full flat plates and shells, perforated plates and shells, printed circuit boards (PCB) as well as shadow masks on the elastic support were investigated by the hybrid method which is a combination of the experimental and numerical methods. The amplitude fluctuation electronic speckle pattern interferometry (AF-ESPI) technique was utilized to obtain the vibration fringe patterns of those plates and shells. The modal assurance criterion (MAC) was used to compare the experimental and numerical results to obtain the equivalent boundary conditions and material properties. The difference between the experimental and numerical model can be reduced via the sensitivity testing and correlation coefficient. After tuning the selected parameters, the natural frequencies obtained are in good agreement with the experimental results. In addition, curve-fitting method was utilized to confer the relationship of the mass remnant ratio to parameter ratio. The functions obtained from the curve fitting can be used to predict the equivalent material properties and natural frequencies of the perforated plates of the diagonal and rectangular arrays. By using the tuned boundary conditions and material properties, the state of stress of the structures can then be calculated reasonably.

    Chapter 1 INTRODUCTION 1 Chapter 2 LITERATURE REVIEW 4 2.1 Perforated plates and shells 4 2.2 Boundary conditions 8 2.3 PCB and shadow mask 12 2.4 Optical method 15 2.5 Inverse method 16 Chapter 3 THEORY 22 3.1 Vibration analysis of plates and shells 22 3.2 AF-ESPI 27 3.3 Shadow moiré method 30 3.4 Correlation criteria 31 3.4.1 Modal assurance criterion 32 3.4.2 Correlation coefficient 34 3.4.3 Sensitivity analysis 33 Chapter 4 TEST SPECIMENS AND EXPERIMENTAL SETUP 35 4.1 Test specimens 35 4.1.1 Specimens for verification of the hybrid method 35 4.1.2 Material properties test 35 4.1.3 Boundary conditions test 36 4.1.4 Industrial examples 36 4.2 Experimental setup 37 4.2.1 Vibration system 37 4.2.2 Optical system 38 4.3 Experimental procedures 39 Chapter 5 NUMERICAL SIMULATION 40 Chapter 6 RESULTS AND DISCUSSIONS 41 6.1 Verification of the hybrid method 41 6.1.1 Full flat plate 41 6.1.2 Spring coefficients 42 6.2 Estimation of material properties 43 6.2.1 Specimens with 3, 9 and 20 holes 43 6.2.2 Perforated plates with different arrays 45 6.2.3 Embedding material for perforated plates 48 6.3 Estimated boundary conditions 50 6.3.1 Specimens with 3, 9 and 20 holes 50 6.3.2 Perforated plates with different arrays 52 6.4 Industrial applications 53 6.4.1 Characteristics of PCB 53 6.4.1.1 Material properties 53 6.4.1.2 Boundary conditions 54 6.4.1.3 Stress analysis 55 6.4.2 Characteristics of the shadow mask 56 6.4.2.1 Free vibration of mounting frame 56 6.4.2.2 Holder property 57 6.4.2.3 Complete shadow mask 58 Chapter 7 CONCLUSIONS 62 REFERENCES 65 ACKNOWLEDGEMENTS 77

    1. R. B. Bhat, “Natural Frequencies of Rectangular Plates Using Characteristic Orthogonal Polynomials in Rayleigh-Ritz Method”, Journal of Sound and Vibration, Vol. 102, No. 4, pp. 493-499, 1985.
    2. R. B. Bhat, “Flexural Vibration of Polygonal Plates Using Characteristic Orthogonal Polynomials in Two Variables”, Journal of Sound and Vibration, Vol. 114, No. 1, pp. 65-71, 1987.
    3. K. A. Burgemeister and C. H. Hansen, “Calculating Resonance Frequencies of Perforated Panels”, Journal of Sound and Vibration, Vol. 196, No. 4, pp. 387-399, 1996.
    4. S. C. Baik, K. H. Oh and D. N. Lee, “Analysis of The Deformation of a Perforated Sheet Under Uniaxial Tension”, Journal of Materials Processing Technology, Vol. 58, pp. 139-144, 1996.
    5. S. C. Baik, H. N. Han, S. H. Lee, K. H. Oh and D. N. Lee, “Plastic Behaviour of Perforated Sheets Under Biaxial Stress State”, International Journal of Mechanical Sciences, Vol. 39, No. 7, pp. 781-793, 1997.
    6. B. J. E. Van Rens, W. A. M. Brekelmans and F. P. T. Baaijens, “Homogenization of The Elastoplastic Behavior of Perforated Plates”, Computers & Structures, Vol. 69, pp. 537-545, 1998.
    7. E. Eugen, W. Klaus and T. Willem, “Perofrated Support Foils with Pre-Defined Hole Size, Shape and Arrangement”, Ultramicroscopy, Vol. 74, pp. 75-81, 1998.
    8. N. E. Shanmugam, V. Thevendran and Y. H. Tan, “Design Formula for Axially Compressed Perforated Plates”, Thin-Walled Structures, Vol.34, pp. 1-20, 1999.
    9. C. J. Cheng and X. J. Fan, “Nonlinear Mathematical Theory of Perforated Viscoelastic Thin Plates with its Applications”, International Journal of Solids and Structures, Vol. 38, pp. 6627-6641, 2001.
    10. Y. C. Lee and F. K. Chen, “Yield Criterion for a Perforate Sheet with a Uniform Triangular Pattern of Round Holes and Low Ligament Ratio”, Journal of Materials Processing Technology, Vol.103, pp.353-361, 2000.
    11. S. C. Baik, H. N. Han, S. H. Lee, K. H. Oh and D. N. Lee, “Plastic Behaviour of Perforated Sheets with Slot-Type Holes Under Biaxial Stress State”, International Journal of Mechanical Sciences, Vol. 42, pp. 523-536, 2000.
    12. K. T. Chen, K. Ting and W. S. Yang, “Stress Analysis of Two-Dimensional Perforated Plates Using Boundary Element Alternating Method”, Computers & Structures, Vol. 75, pp. 515-527, 2000.
    13. K. M. Liew and Z. C. Feng, “Three-Dimensional Free Vibration Analysis of Perforated Super Elliptical via the P-Ritz Method”, International Journal of Mechanical Sciences, Vol. 43, pp. 2613-2630, 2001.
    14. X. W. Xu, H. C. Man and T. M. Yue, “Strength Prediction of Composite Laminates with Multiple Elliptical Holes”, International Journal of Solids and Structures, Vol. 37, pp. 2887-2900, 2000.
    15. Y. S. Lee and Y. W. Kim, “Effect of Boundary Conditions on Natural Frequencies for Rotating Composite Cylindrical Shells with Orthogonal Stiffeners”, Advances in Engineering Software, Vol. 30, pp. 649-655. 1999.
    16. U. Montag, W. B. Kratzig and J. Soric, “Increasing Solution Stability for Finite-Element Modeling of Elasto-Plastic Shell Response”, Advances in Engineering Software, Vol. 30, pp. 607-619, 1999.
    17. D. Yadav and N. Verma, “Free Vibration of Composite Circular Cylindrical Shells with Random Material Properties. Part I: Applications”, Composite Structures, Vol. 51, pp. 371-380, 2001.
    18. C. M. Lim and K. M. Liew, “Vibratory Behaviour of Shallow Conical Shells by a Global Size Formulation”, Engineering Structures, Vol. 17, No. 1, pp. 63-70, 1995.
    19. H. Ahmadian, J. E. Mottershead M. I. Friswell, “Boundary Condition Identification by Solving Characteristic Equations”, Journal of Sound and Vibration, Vol. 247, No. 5, pp. 755-763, 2001.
    20. H. Hua, H. Sol, W. P. de Wilde, “Identification of Plate Rigidities of a Circular Plate with Cylindrical Orthotropy Using Vibration Data”, Computers & Structures, Vol. 77, pp. 83-89, 2000.
    21. R. F. Gibson, “Modal Vibration Response Measurements for Characterization of Composite Materials and Structures”, Composites Science and Technology, Vol. 60, pp. 2769-2780, 2000.
    22. A. V. Bapat and S. Suryanarayan, “A Theoretical Basis for the Experimental Realization of Boundary Conditions in the Vibration Analysis of Plates”, Journal of Sound and Vibration, Vol. 163, No. 3, pp. 463-478, 1993.
    23. C. C. Chen, S. Kitipornchai, C. W. Lim and K. M. Liew, “Free Vibration of Symmetrically Laminated Thick-Perforated Plates”, Journal of Sound and Vibration, Vol. 230, No. 1, pp. 111-132, 2000.
    24. Y. Xiang, K. M. Liew and S. Kitipornchai, “Vibration Analysis of Rectangular Mindlin Plates Resting on Elastic Edge Supports”, Journal of Sound and Vibration, Vol. 204, No. 1, pp. 1-16, 1997.
    25. Y. K. Cheung and D. Zhou, “Vibration of Rectangular Plates with Elastic Intermediate Line-Supports and Edge Constraints”, Thin Walled Structures, Vol. 37, pp.305-331, 2000.
    26. S. W. Kang and J. M. Lee, “Free Vibration Analysis of Arbitrarily Shaped Plates with Clamped Edges Using Wave-Type Functions”, Journal of Sound and Vibration, Vol. 242, No. 1, pp. 9-26, 2001.
    27. M. H. Huang and D. P. Thambiratnam, “Free Vibration Analysis of Rectangular Plates on Elastic Intermediate Supports”, Journal of Sound and Vibration, Vol. 240, No. 3, pp. 569-580, 2001.
    28. P. W. Loveday and C. A. Rogers, “Free Vibration of Elastically Supported Thin Cylinders Including Gyroscopic Effects”, Journal of Sound and Vibration, Vol. 217, No. 3, pp. 547-562, 1998.
    29. Kostas P. Soldatos and A. Messina, “The Influence of Boundary Conditions and Trensverse Shear on Vibration of Angle-Ply Laminated Plates, Circular Cylindrical Panels”, Computer Methods in Applied Mechanics and Engineering, Vol. 190, pp.2385-3409, 2001.
    30. S. T. Choi and Y. T. Chou, “Vibration Analysis of Elastically Supported Turbomachinery Blades by the Modified Differential Quadrature Method”, Journal of Sound and Vibration, Vol. 240, No. 5, pp. 937-953, 2001.
    31. A. L. Kalamkarov, “Stress Analysis in Elastic Joint Structures”, International Journal of Mechanical Science, Vol. 39, No. 7, pp. 873-883, 1997.
    32. F. L. Liu and K. M Liew, “Analysis of Vibration Thick Rectangular Plates with Mixed Boundary Constraints Using Differental Quadrature Element Method”, Journal of Sound and Vibration, Vol. 225, No. 5, pp. 915-934, 1999.
    33. K. M. Liew, “Treatments of Over-Restrained Boundaries for Doubly Connected Plates of Arbitrary Shape in Vibration”, International Journal of Solids Structures, Vol. 30, No. 3, pp. 337-347, 1993.
    34. K. M. Liew and K. Y. Lam, “Effects of Arbitrarily Distributed Elastic Point Constraints on Vibrational Behaviour of Rectangular Plates”, Journal of Sound and Vibration, Vol. 174, No. 1, pp. 23-36, 1994.
    35. K. M. Liew, K. Y. Lam and S. T. Chow, “Free Vibration Analysis of Rectangular Plates Using Orthogonal Plate Function”, Computers & Structures, Vol. 34, No. 1, pp. 79-85, 1990.
    36. K. M. Liew and K. Y. Lam, “A Rayleigh-Ritz Approach to Transverse Vibration of Isotropic and Anisotropic Trapezoidal Plates Using Orthogonal Plate Functions”, International Journal of Solids Structures, Vol. 27, No. 2, pp. 189-203, 1991.
    37. D. J. Gorman, “An Analytical Solution for the Free Vibration Analysis of Rectangular Plates Resting on Symmetrically Distributed Point Supports”, Journal of Sound and Vibration, Vol. 79, No. 4, pp. 561-574, 1981.
    38. S. Abrate, “Vibration of Point-Supported Rectangular Composite Plates”, Composites Science and Technology, Vol. 53, pp. 325-332, 1995.
    39. M. S. Ingber, A. L. Pate and J. M. Salazar, “Vibration of a Clamped Plate with Concentrated Mass and Spring Attachments”, Journal of Sound and Vibration, Vol. 153, No. 1, pp. 143-166, 1992.
    40. A. V. Bapat and S. Suryanarayan, “The Flexibility Function Approach to Vibration Analysis of Rectangular Plates with Arbitrary Multiple Point Suports in the Edges”, Journal of Sound and Vibration, Vol. 128, No. 2, pp. 209-233, 1989.
    41. P. L. Gould, R. V. Ravichandran and S. Sridharan, “A Local-Global FE Model for Nonlinear Analysis of Column-Supported Shells of Revolution”, Engineering Structures, Vol. 29, No. 10, pp. 915-919, 1998.
    42. D. Zhou, Y. K. Cheung and J. Kong, “Free Vibration of Thick, Layered Rectangular Plates with Point Supports by Finite Layer Method”, International Journal of Solids and Structures, Vol. 37, pp. 1483-1499, 2000.
    43. D. J. Gorman and R. K. Singal, “Analytical and Experimental Study of Vibrating Rectangular Plates on Rigid Point Supports”, Journal of AIAA, Vol. 29, No. 5, pp. 838-844, 1991.
    44. Y. K. Cheung and D. Zhou, “The Free Vibration of Rectangular Composite Plates with Point-Supports Using Static Beam Functions”, Composite Structures, Vol. 44, pp. 145-154, 1999.
    45. L. T. Lee and D. C. Lee, “Free Vibration of Rectangular Plates on Elastic Point Supports with the Application of a New Type of Admissible Function”, Computers & Structures, Vol. 65, No. 2, pp. 149-156, 1997.
    46. J. Nan, G. Li and K. Xu, “Yielding Behavior of Low Expansion Invar Alloy at Elevated Temperature”, Journal of Materials Processing Technology, Vol. 114, pp. 36-40, 2001.
    47. K. W. Kim, N. W. Kim and D. J. Kang, “Analysis of Shadow Mask Thermal Deformation and Prediction of Beam Landing Shifts for Color CRT”, IEEE Transactions on Consumer Electronics, Vol. 44, No. 2, pp. 442-450, 1998.
    48. K. W. Kim, D. J. Kang and N. W. Kim, “Measurements of the Temperature Distribution of a Shadow Mask in a Cathode-Ray Tube by Use of a Radiation Thermometer”, Measurement Science & Technology, Vol. 8, pp. 1328-1332, 1997.
    49. B. W. Jang, W. S. Shin and S. J. You, “Thermal Deformation of a Tension Mask and Beam Landing Shift for a Perfectly Flat CRT Under Localized Heating”, IEEE Transactions on Consumer Electronics, Vol. 45, No. 1, pp. 243-251, 1999.
    50. A. Robert and D. J. Peter, “An Unusual Problem in Vibration Damping: the Flat Tension Mask Computer Tube”, Ultrasonics Symposium, pp. 1093-1097, 1989.
    51. W. C. Wang and Y. H. Tsai, “Experimental Vibration Analysis of the Shadow Mask”, Optics and Lasers in Engineering, Vol. 30, No. 6, pp. 539-550, 1998.
    52. W. C. Wang and K. H. Lai, “Experimental Investigation of Vibration of the Shadow Mask with Different Assembly Conditions”, IEEE Transactions on Consumer Electronics, Vol. 45, No. 4, pp. 1046-1056, 1999.
    53. Wang, W. C. and K. H. Lai, “Experimental Vibration Analysis on the Assembly Conditions of the Shadow Mask”, Proceedings of the International Conference on Advanced Technology in Experimental Mechanics, pp.593~598, Ube, Japan, July 21-24, 1999.
    54. Q. J. Yang, H. L. J. Pang, Z. P. Wang, G. H. Lim, F. F. Yap and R. M. Lin, “Vibration Reliability Characterization of PBGA Assemblies”, Microelectronics Reliability, Vol. 40, pp. 1097-1107, 2000.
    55. S. K. Park, J. Kim, Y. C. Chang and B. S. Kang, “Analysis of the Deformation of a Perforated Sheet Under Thermal and Tension Load Using Finite Element Method”, Journal of Materials Processing Technology, Vol. 113, pp. 761-765, 2001.
    56. A. O. Cifuentes, “Estimating the Dynamic Behavior of Printed Circuit Boards”, IEEE Transactions on Components, Packaging, and Manufacturing Technology – Part B: Advanced Packaging, Vol.17, No. 1, pp. 69-75, 1994.
    57. Q. J. Yang, G. H. Lim, R. M. Lin, F. F. Yap, H. L. J. Pang and Z. P. Wang, “Experimental Modal Analysis of PBGA Printed Circuit Board Assemblies”, IEEE/CPMT Electronic Packaging Technology Conference, pp. 290-296, 1997.
    58. M. Amagai, “Chip Scale Package (CSP) Solder Joint Reliability and Modeling”, Microelectronics Reliability, Vol. 39, pp. 463-477, 1999.
    59. K. H. Low, G. B. Chai, T. M. Lim and S. C. Sue, “Comparisons of Experimental and Theoretical Frequencies for Rectangular Plates with Various Boundary Conditions and Added Masses”, International Journal of Mechanical Sciences, Vol. 40, No. 11, pp. 1119-1131, 1998.
    60. M. Ohsono, T. Iwane, H. Uchida, N. Tajima and M. Kada, “The Development of a New Resin with High Mechanical Strength at a High Temperature for TCP’s”, IEEE Electronic Components and Technology Conference, pp. 582-587, 1996.
    61. G. H. Lim, J. H. Ong and J. E. T. Penny, “Effect of Edge and Internal Point Support of a Printed Circuit Board Under Vibration”, Journal of Electronic Packaging: Transactions of the ASME, Vol. 121, pp. 122-126, 1999.
    62. A. R. D. Somervell and T. H. Barnes, “Unambiguous Measurement of Surface Profile Using a Sagnac Interferometer with Phase Feedback”, Optics Communications, Vol. 150, pp. 61-65, 1998.
    63. C. J. Tay, C. Quan and H. M. Shang, “Shape Identification Using Phase Shifting Interferometry and Liquid-Crystal Phase Modulator”, Optics and Laser Technology, Vol. 30, pp. 545-550, 1998.
    64. S. Osawa, R. Furutani, K. Takamasu , S. Ozono and H. Asano, “3-D Shape Measurement by Self-Referenced Pattern Projection Method”, Measurement, Vol. 26, pp. 157-166, 1999.
    65. Y. M. He, C. J. Tay and H. M. Shang, “Deformation and Profile Measurement Using the Digital Projection Grating Method”, Optics and Lasers in Engineering, Vol. 30, pp. 367-377, 1998.
    66. J. Villa, M. Servin and L. Castillo, “Profilometry for the Measurement of 3-D Object Shapes Based on Regularized Filters”, Optics Communications, Vol. 161, pp. 13-18, 1999.
    67. L. S. Wang and S. Krishnaswamy, “Shape Measurement Using Additive-Subtractive Phase Shifting Speckle Interferometry”, Measurement Science & Technology, Vol. 7, pp. 1748-1754, 1996.
    68. J. Kozlowski, P. Boccardi and M. Fiore, “A Novel Interferometric Method for Contour Mapping of Optically Rough Surface”, Optics and Lasers in Engineering, Vol. 31, pp. 41-50, 1999.
    69. S. R. McNeill, M. A. Sutton, Z. Miao and J. Ma, “Measurement of Surface Profile Using Digital Image Correlation”, Experimental Mechanics, Vol. 37, No. 1, pp. 13-20, 1996.
    70. J. Zhou and Z. Hu, “3-D Object Profilometry Based on Direct Fringe Displacement Analysis”, Optics and Lasers in Engineering, Vol. 21, pp. 187-198, 1994.
    71. W. O. Wong and K. T. Chan, “Quantitative Vibration Amplitude Measurement with Time-Averaged Digital Speckle Pattern Interferometry”, Optics & Laser Technology, Vol. 30, pp. 317-324, 1998.
    72. M. J. Ratcliffe and N. A. J. Lieven, “A Generic Element-Based Method for Joint Identification”, Mechanical Systems and Signal Processing, Vol. 14, No. 1, pp. 3-28, 2000.
    73. A. Niclas and L. Bourgeois, “An Inverse Approach to Determine the Non-Linear Properties of Induction Heat-Treated Steels”, European Journal of Mechanical A/Solids, Vol. 19, pp. 69-88, 2000.
    74. A. Hasanov and Z. Seyidmamedov, “The Solution of an Axisymmetric Inverse Elasto-Plastic Problem Using Penetration Diagrams”, International Journal of Non-Linear Mechanics, Vol. 30, No. 4, pp.465-477, 1995.
    75. S. Frikha, M. Gaudin and G. Coffignal, “Boundary Condition Error for Parametric Updating of In-Operation Systems – Application to Piping Systems”, Journal of Sound and Vibration, Vol. 241, No. 3, pp. 373-399, 2001.
    76. K. V. Yuen and L. S. Katafygiotis, “Bayesian Time-Domain Approach for Model Updating Using Ambient Data”, Probabilistic Engineering Mechanics, Vol. 16, pp. 219-231, 2001.
    77. M. Dalenbring, “Damping Function Estimation Based on Measured Vibration Frequency Reponses and Finite-Element Displacement Modes”, Mechanical System and Signal Processing, Vol. 13, No. 4, pp.547-569, 1999.
    78. J. K. Sinha, P. M. Mujumdar and R. I. K. Moorthy, “Detection of Spring Support Locations in Elastic Structures Using a Gradient-Based Finite Element Model Updating Technique”, Journal of Sound and Vibration, Vol. 240, No. 3, pp. 499-518, 2001.
    79. J. K. Sinha and M. I. Friswell, “The Location of Spring Supports from Measured Vibration Data”, Journal of Sound and Vibration, Vol. 244, No. 1, pp. 137-153, 2001.
    80. F. Zhang, A. J. Kassab and D. W. Nicholson, “A Boundary Element Solution of an Inverse Elasticity Problem and Applications to Determining Residual Stress and Contact Stress”, International Journal of Solids Structures, Vol. 34, No. 16, pp. 2073-2086, 1997.
    81. S. A. Cimaszeewski, H. Yim and Jr. J. H. Williams, “Multiparameter Statistical Determination of Single Fibre Interphase Properties”, Ultrasonics, Vol. 33, No. 5, pp. 403-411, 1995.
    82. C. Zang, H. Graff and M. Imregun, “Frequency-Domain Criteria for Correlation and Updating Dynamic Finite Element Models”, Mechanical Systems and Signal Processing, Vol. 15, No. 1, pp. 139-155, 2001.
    83. I. Takewaki and K. Uetani, “Inverse Component-Mode Synthesis Method for Damped Large Structural Systems”, Computers & Structures, Vol. 78, pp. 415-423, 2000.
    84. R. Kenigsbuch and Y. Halevi, “Model Updating in Structural Dynamics: a Generalised Reference Basis Approach”, Mechanical Systems and Signal Processing, Vol.12, No. 1, pp. 75-90, 1998.
    85. P. D. Cha and W. Gu, “Model Updating Using an Incomplete Set of Experimental Modes”, Journal of Sound and Vibration, Vol. 233, No. 4, pp. 587-600, 2000.
    86. M. M. Gola, A. Soma and D. Botto, “On Theoretical Limits of Dymanic Model Updating Using a Sensitivity-Based Approach”, Journal of Sound and Vibration, Vol. 244, No. 4, pp. 583-595, 2001.
    87. T. C. Lai and K. H. Ip, “Parameter Estimation of Orthotropic Plates by Bayesian Sensitivity Analysis”, Composite Structures, Vol. 34, pp. 29-42, 1996.
    88. Y. C. Lam, D. Manickarajah and A. Bertolini, “Performance Characteristics of Resizing Algorithms for Thickness Optimization of Plate Structures”, Finite Elements in Analysis and Design, Vol. 34, pp. 159-174, 2000.
    89. V. Lenaerts, G. Kerschen and J. C. Golinval, “Proper Orthogonal Decomposition for Model Updating of Non-Linear Mechanical Systems”, Mechanical Systems and Signal Processing, Vol. 15, No. 1, pp. 31-43, 2001.
    90. I. Takewaki, “Inverse Component-Mode Synthesis Method for Redesign of Large Structural Systems”, Computer Methods in Applied Mechanics & Engineering, Vol. 166. pp. 201-209, 1998.
    91. J. E. Mottershead, C. Mares, M. I. Friswell and S. James, “Selection and Updating of Parameters for an Aluminium Space-Frame Model”, Mechanical Systems and Signal Processing, Vol.14, No. 6, pp. 923-944, 2000.
    92. C. L. Karr, I. Yakushinb and K. Nicolosia, “Solving Inverse Initial-Value, Boundary-Value Problems via Genetic Algorithm”, Artificial Intelligence, Vol.13, pp. 625-633, 2000.
    93. G. M. Darrell and H. Benaroya, “A Discrete Inverse Vibration Problem with Parameter Uncertainty”, Applied Mathematics and Computation, Vol. 69, pp. 313-333, 1995.
    94. X. L. Gaoa and R. E. Rowlandsb, “Hybrid Method for Stress Analysis of Finite Three-Dimensional Elastic Components”, International Journal of Solids and Structures, Vol. 37, pp.2727-2751, 2000.
    95. J. M. W. Brownjohn, P. Q. Xia, H. Hao and Y. Xia, “Civil Structure Condition Assessment by FE Model Updating: Methodology and Case Studies”, Finite Elements in Analysis and Design, Vol. 37, pp. 761-775, 2001.
    96. R. Zhang and S. Mahadevan, “Model Uncertainty and Bayesian Updating in Reliability-Based Inspection”, Structural Safety, Vol. 22, pp. 145-160, 2000.
    97. J. Cunha and J. Piranda, “Application of Model Updating Techniques in Dynamics for the Identification of Elastic Constants of Composite Materials”, Composites Part B: Engineering, Vol. 30, pp. 79-85, 1999.
    98. K. H. Ip, P. C. Tse and T. C. Lai, “Material Characterization for Orthotropic Shells Using Modal Analysis and Rayleigh-Ritz Models”, Composites Part B, Vol. 29B, pp. 397-409, 1998.
    99. T. L. Teng, F. A. Chang and C. C. Liang, “The Realization of Boundary Conditions in the Vibration Analysis of Plates”, Journal of Franklin Inst., Vol. 335B, No. 5, pp. 799-812, 1998.
    100. W. C. Wang and K. H. Lai, “Investigation on Dynamic Behavior of Structural Components on the Elastic Support by Hybrid Method”, Proceedings of the 24th National Conference on Theoretical and Applied Mechanics, Society of Theoretical and Applied Mechanics, Hsin-chu, Taiwan, R.O.C., H73-80, 2000. (in Chinese)
    101. K. H. Lai and W. C. Wang, “Investigation of Dynamic Behavior of Perforated Plates by the Hybrid Method”, Proceedings of the Ninth National Conference on the Society of Sound and Vibration, Hsin-chu, Taiwan, R.O.C., pp. 21-28, 2001. (in Chinese)
    102. K. H. Lai and W. C. Wang, “Hybrid Analysis of the Vibration Behavior of Perforated Plates”, Proceedings of SEM Annual Conference and Exposition on Experimental and Applied Mechanics, 6 pages, Portland, Oregon. U.S.A., June 4-6, 2001.
    103. W. C. Wang, C. H. Hwang and S. Y. Lin, "Vibration Measurement by the Time-Averaged ESPI Methods", Applied Optics, Vol. 35, No. 2, pp. 4502-4509, 1996.
    104. C. H. Hwang, “Investigation of Vibration Characteristics of Composite Plates Containing Defect by Amplitude-Fluctuation ESPI”, Ph. D. Dissertation, Department of Power Mechanical Engineering, National Tsing Hua University, Hsin-chu, Taiwan, R.O.C., 1996.
    105. S. H. Hsu,"Application of Digital Shadow Moiré Method on the Nondestructive Inspection and Determination of Buckling Strength of Composite Materials", M. S. Thesis, Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan, R.O.C., 1993. (in Chinese)
    106. "FEMTools", Version 1.4.4, Integration Test and Analysis Data, Belgium, 1999.
    107. "ANSYS", Revision 5.3, Swanson Analysis Systems, Inc, Houston, PA, U.S.A, 1996.
    108. "Signal Doctor", Version 1.75, ProWave Co., R.O.C.
    109. "The STAR System", Structural Measurement System (SYS), A GenRed Product Line, Canada, 1990.
    110. "SURFER", Version 5.01, Surface Mapping System, Golden Software, Inc., Golden, Colorado, U.S.A., 1994.
    111. K. H. Lai and W. C. Wang, “Hybrid Investigation of the Vibration Behavior of Elastic-Supported Perforated Plates”, Journal of Strain Analysis. (Submitted).
    112. C. M. L. Wu, J. K. L. Lai, Y. L. Wu, "Thermal-Mechanical Interface Crack Behavior of a Surface Mount Solder Joint ", Finite Element in Analysis and Design, Vol. 30, pp. 19-30, 1998.
    113. T. Rasty, W. Kolarik and B. Chen, “Designing Surface-Mounted Components for High Reliability”, Journal of Energy Resources Technology, Transactions of the ASME, Vol.116, pp. 232-239, 1994.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE