研究生: |
鄒易霖 Tsou, Yi-Lin |
---|---|
論文名稱: |
混合綴碳球Si/SiOz粉末作為鋰離子電池陽極之電化學性能研究 C/Si/SiOz@Graphite Composites as an Anode Material for Lithium-Ion Batteries |
指導教授: |
李紫原
Lee, Chi-Young |
口試委員: |
裘性天
李孟倫 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 47 |
中文關鍵詞: | 鋰離子電池 、碳 、陽極 、矽 、複合材料 |
外文關鍵詞: | Lithium-Ion Batteries, Graphite, anode, silicon, Composites |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科技逐漸的進步發展,人們對於儲能的需求也越來越大,並且致力於研究出更高能量密度的儲能裝置。在鋰離子陽極材料中,矽 (Si) 被認為是鋰離子電池 (LIB) 陽極材料的候選材料之一,這歸因於其高理論比容量和低成本的優勢。 但是低電導率循環中的大體積膨脹 (~300%) 以及由於體積反覆變化而引起的固體電解質界面 (SEI) 層的不穩定性,限制了將Si用作鋰離子電池中的陽極。
本研究將工業上取得的矽氧複合物SiOx原始粉末經過高溫熱處理、加入葡萄糖酒精溶液中以水熱法摻碳、高溫碳化等具工業化潛力的程序加工改良後,摻少量進入石墨材料中,探討其對比電容量等電性的影響。矽氧複合物具有高達1500 mAh/g以上的比電容量,其比電容量的貢獻主要來自複合物中分散的矽;然而,矽在儲鋰時會轉為鋰矽化合物,伴隨劇烈體積膨脹。本研究之所以採用「混合」的方式增進電池比電容量,希望能將具有緩衝體積膨脹性質的石墨與高比電容量的矽氧複合物搭配,達到相輔相成的效果。
結果的確如預期,包覆碳的SiOx的確不會因為結構崩塌而造成電性上的損失,另外組裝以C/Si/SiOz混合石墨為陽極和三元材料為陰極的全電池,以0.5 C速率進行充放電循環測試,首圈庫倫效率高達97.76%,經過1000圈後衰減率也僅有25%。
Silicon (Si) has been regarded as one of the candidates for anode material in lithium-ion batteries (LIBs) attributing to the advantages of high theoretical specific capacity and low cost. However, low electrical conductivity, large volume expansion during cycling (~300%) , and instability of the solid electrolyte interface (SEI) layer caused by repeated volume changes limit the use of Si as anodes in LIBs.
To overcome the issues that cause poor capacity retention, it is believed that the uniformity and well mixing of Si and carbon could set as a buffer for volume expansion of Si and improve the electrical conductivity at the same time. In this research, industrially obtained SiOx was used as the Si source.
After high-temperature heat treatment and carbon coating by hydrothermal method, Si particles and carbon were uniformly mixed and well dispersed. Small quantities of the SiOz/ amorphous-Si/C composites were mixed into graphite and used as anodes in LIBs. The full-cell prepared from SiOz/amorphous-Si/C@graphite (5%:95%) composites demonstrates good cycle performance with little fading (75% after 1000cycles) .
[1] IEA finds CO2 emissions flat for third straight year even as global economy grew in 2016: https://vipo.iea.org/newsroom/energysnapshots/global-carbon-dioxide-emissions-1980-2016.html (accessed 17 March 2017).
[2] Listen to the Earth smash another global temperature record: https://phys.org/news/2017-01-earth-global-temperature.html (accessed 19 January 2017).
[3] Latest Trends In Smart Grid Technology In The Utilities : https://latest-trends-in-smart-grid-technology-in-the-utilities-industry-9e2f295d3a4f (accessed 19 Sep 2019).
[4] Like a Rock : Tesla Sales, Worldwide and Us : https://www.extremetech.com/tag/tesla-model-s (accessed 5 Sep 2019).
[5] Lithium Batteries With 200% Typical Energy Density : http://kirillklip.blogspot.com/2015/02/lithium-batteries-with-200-typical.html(accessed 10 Feb 2015).
[6] E. Plichta, M. Salomon, S. Slane, M. Uchiyama, D. Chua, W. B. Ebner,and H. W.Lin, “A Rechargeable Li/LixCoO2 Cell ” Power Sources 1987, 21, 25–31.
[7] J. Molenda, A. Stoklosa, and T. Bak, “ Modification in the,Electronic-structure of Cobalt Bronze LixCoO2 and the Resulting,Electrochemical Properties” Solid State Ionics 1989, 36, 53–58.
[8] T. Nagaura and K. Tozawa, “Lithium-ion rechargeable battery” Program Batteries Solar Cells 1990, 9, 209-217.
[9] C. Delmas, “Alkali metal intercalation in layered oxides” Materials Science and Engineering: B 1989, 3, 97-101.
[10] 黃可龍、王兆翔、劉素琴,”鋰離子電池原理與技術 ”,五南出版社 2010, 300-305
[11] Lingzhi Qian, Jin-Le Lan, Mengyao Xue, Yunhua Yu, Xiaoping Yanga “Two-step ball-milling synthesis of a Si/SiOx/C composite electrode for lithium ion batteries with excellent long-term cycling stability” RSC Advances 2017, 7, 36697-36704.
[12] R. L. C. Vink, G. T. Barkema, and W. F. van der Weg “Raman spectra and structure of amorphous Si.” Physical review B 2001, 63, 115210
[13] V.T. Srikar ; A.K. Swan ; M.S. Unlu ; B.B. Goldberg ; S.M. Spearing “ Micro-Raman measurement of bending stresses in micromachined silicon flexures ” Microelectromechanical Systems 2003, 12, 779-787
[14] Q. Shabir, A. Pokale, A. Loni, D. R. Johnson, L. T. Canham, R. Fenollosa, M. Tymczenko, I. Rodríguez, F. Meseguer, A. Cros & A. Cantarero “ Medically Biodegradable Hydrogenated Amorphous Silicon Microspheres ” Silicon 2011, 3, 173-176
[15] Nikolaos Papaioannou, Adam Marinovic, Noriko Yoshizawa, Angela E. Goode, Michael Fay, Andrei Khlobystov, Maria-Magdalena Titirici & Andrei Sapelkin “Structure and solvents effects on the optical properties of sugar-derived carbon nanodots ” Scientific Reports 2018, 8
doi : 10.1038/s41598-018-25012-8
[16] Orisini, Francois, Dolle, Mickael and Tarascon, Jean-Marie “Impedance Study of the Li/Electrolyte interface upon Cycling” Solid State Ionics 2000, 135, 213-221.
[17] L. Kavan, D. Fattakhova, P. Krtil, J. “Lithium Insertion into Mesoscopic and Single‐Crystal TiO2 (Rutile) Electrodes” The Electrochemical Society 1999, 146, 1375-1379
[18] 戴瑞豐,”以電沉積法製備氧化鈷薄膜陽極及其在鋰電池中之充放電性質 ”東海大學化學工程系碩士論文, 2004
[19] L. A. Zemnukhova, A. E. Panasenko, E. A. Tsoi, G. A. Fedorishcheva, N. P. Shapkin, A. P. Artem’yanov, V. Yu. Maiorov, “Composition and structure of amorphous silica produced from rice husk and straw” Inorganic Materials 2014, 50, 75–81.
[20] Suzanne L. Warring, David A. Beattie, and A. James McQuillan, “Surficial Siloxane-to-Silanol Interconversion during Room-Temperature Hydration/Dehydration of Amorphous Silica Films Observed by ATR-IR and TIR-Raman Spectroscopy” Langmuir 2016, 32, 1568−1576