研究生: |
譚至良 |
---|---|
論文名稱: |
摻混鑽石粉末及膨脹石墨之矽膠複合材料之熱性質研究 Investigation on the thermal properties of silicone composites filled with expanded graphite and diamond powder |
指導教授: | 戴念華 |
口試委員: |
葉孟考
何詠碩 林宏一 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 89 |
中文關鍵詞: | 鑽石 、膨脹石墨 、矽膠 、熱傳導係數 、電絕緣 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來在電子元件邁向微縮化及微/奈機電系統的整合下,奈米尺度下的熱管理儼然成為一項非常重要的研究課題。傳統上,碳材料普遍具有較優異的熱傳導能力,因此,被廣泛應用在複合材料領域中,以提升高分子基材的熱傳導特性及其他相關性質。
有鑑於此,本研究使用化學插層法製備的膨脹石墨以及市售的鑽石粉作為補強材,並以矽膠作為高分子基材。實驗中使用三軸滾輪機製備膨脹石墨/矽膠複合材料試片;以正己烷當作溶劑使鑽石粉有效地分散在矽膠基材中,並且透過電磁攪拌的方式製備鑽石/矽膠複合材料試片;最後,結合以上兩種製程製備膨脹石墨/鑽石/矽膠複合材料試片。在實驗設計上,本研究分別填入不同維度及粒徑大小的補強材於高分子基材中,透過雷射閃光法量測複合材料之熱擴散係數,進而計算出其熱傳導值,並探討其對熱傳導機制的影響;其次,以四點探針量測系統及熱重分析儀鑑定複合材料之電絕緣性及熱穩定性;最後,再輔以場發射掃描式電子顯微鏡觀察複合材料斷面之表面形貌。
在本研究中,將膨脹石墨與粒徑尺寸為150-180 μm之鑽石粉末分別以3 wt% 與50 wt% 共同填充於矽膠中,可以得到本實驗最高的熱傳導值為2.41 W/m∙K。
Recently, due to the rapid developments in miniaturization of electronic devices and integrated micro/nano-electro-mechanical systems (MEMs/NEMs), thermal managements in nanoscale have become a critical issue. Traditionally, the carbon-based materials are regarded as the potential candidates due to the high thermal conductivity. Therefore, they are extensively applied to the field of composites for enhancing the thermal conductivity and other properties of polymers.
In this study, we used expanded graphite (EG) prepared by using chemical intercalation method and commercial diamond powder (DP) as reinforcements, silicone as polymer matrix. First, we fabricated EG/Silicone composite specimens by three-roll mill. Second, we used hexane as solvent to disperse DP uniformly in silicone, and fabricated DP/Silicone composite specimens by electrical-magnetic stirring. Finally, we combined above-mentioned methods to fabricate EG/DP/Silicone composites specimens. In experimental design, we filled different dimension degree and grain size of reinforcements in Silicone. We measured the thermal diffusivities of composites by laser flash method, in order to calculate the thermal conductivities of composites. The effects on the mechanisms of heat conduction were also discussed. In the other hand, we used four-point probe analysis system and thermogravimetric analysis to characterize the electric insulativity and thermal stability, respectively. Finally, we observed the morphology of crossection of composites by field emission scanning electron microscope.
In this study, we used expanded graphite and diamond powder with particle size between 150-180 μm as filler filled into silicone together with 3 wt% and 50 wt%, respectively. In this case, we can obtain the highest thermal conductivity, 2.41 W/m∙K.
[1] 顧宜,複合材料,新文京開發出版股份有限公司,台灣台北,2002。
[2] 馬振基,高分子複合材料,國立編譯館,台灣台北,2009。
[3] 黃振東,熱界面材料之特性與應用,工業材料雜誌,第220 期,第83-92頁,2005。
[4] M. Grujicic, C. L. Zhao, and E. C. Dusel, "The Effect of Thermal Contact Resistance on Heat Management in the Electronic Packaging," Applied Surface Science, Vol. 246, pp. 290-302, 2005.
[5] R. Prasher, “Thermal Interface Materials:Historical Perspective, Status, and Future Directions,” Proceedings of the IEEE, 2006.
[6] F. Sarvar, D. C. Whalley, and P. P. Conway, “Thermal Interface Materials - A Review of the State of the Art,” Electronics Systemintegration Technology Conference, 2006.
[7] J. Liu, B. Michel, M. Rencz, C. Tantolin, C. Sarno, R. Miessner, K. V. Schuett, X. Tang, S. Demoustier, and A. Ziaei, “Recent Progress of Thermal Interface Material Research – An Overview,” THERMINIC, 2008.
[8] S. S. Tonapi, R. A. Fillion, F. J. Schattenmann, H. S. Cole, and J. D. Evans, "An Overview of Thermal Management for Next Generation Microelectronic Devices," IEEE/SEMI Advanced Manufacturing Conference, pp. 250-254, 2003.
[9] A. A. Hashim, Smart nanoparticles in technology, InTech Publications, 2012.
[10] 周弘恩,鑽石導熱膏熱傳導性質之研究,碩士論文,國立台北科技大學材料及資源工程系,台灣台北,2010
[11] J. P. Holman, Heat Transfer 8th ed., McGraw-Hill publications, 2000.
[12] J. C. Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., Dover Publications, 1954.
[13] S. C. Cheng and R. I. Vachon, “The Prediction of the Thermal Conductivity of Two and Three Phase Solid Heterogeneous Mixtures,” International Journal of Heat and Mass Transfer, Vol. 12, pp. 249-264, 1969.
[14] D. A. G. Bruggeman, “Calculation of Various Physics Constants in Heterogeneous Substances I. Dielectricity Constants and Conductivity of Mixed Bodies from Isotropic Substances,” Annalen Der Physik, Vol. 24, pp. 636-664, 1935.
[15] D. W. Sundstrom and Y. D. Lee, “Thermal Conductivity of Polymers Filled with Particulate Solids,” Journal of Applied Polymer Science, Vol. 12, pp. 3159-3167, 1972.
[16] E. Falcao, R. Blair, J. Mack, L. Viculis, C. Kwon, and M. Bendikov, “Microwave Exfoliation of a Graphite Intercalation Compound,” Carbon, Vol. 45, pp. 1367–1369, 2007.
[17] T. Wei, Z. Fan, G. Luo, C. Zheng, and D. Xie, “A Rapid and Efficient Method to Prepare Exfoliated Graphite by Microwave Irradiation,” Carbon, Vol. 47, pp. 337–339, 2009.
[18] L. M. Viculis, J. J. Mack, O. M. Mayer, H. T. Hahnb, and R. B. Kaner, “Intercalation and Exfoliation Routes to Graphite Nanoplatelets,” Journal of Materials Chemistry, Vol. 15, pp. 974-978, 2005.
[19] R. Senguptaa, M. Bhattacharyaa, S. Bandyopadhyayb, and A. K. Bhowmick, “A Review on the Mechanical and Electrical Properties of Graphite and Modified Graphite Reinforced Polymer Composites,” Progress in Polymer Science, Vol. 36, pp. 638-670, 2011.
[20] S. R. Dhakatea, S. Sharmaa, M. Borahb, R. B. Mathur, and T. L. Dhami, ” Expanded Graphite-based Electrically Conductive Composites as Bipolar Plate for PEM Fuel Cell,” International Journal of Hydrogen Energy, Vol. 33, pp. 7146-7152, 2008.
[21] S, Kim and L. T. Drzal, “High Latent Heat Storage and High Thermal Conductive Phase Change Materials Using Exfoliated Graphite Nanoplatelets,” Solar Energy Materials & Solar Cells, Vol. 93, pp. 136-142, 2009.
[22] W. Zheng and S. C. Wong, “Electrical Conductivity and Dielectric Properties of PMMA/Expanded Graphite Composites,” Composites Science and Technology, Vol. 63, pp. 225-235, 2003.
[23] M. A. Raza, A. V. K. Westwood, A. P. Brown, and C. Stirling, “Texture, Transport and Mechanical Properties of Graphite Nanoplatelet/Silicone Composites Produced by Three roll Mill,” Composites Science and Technology, Vol. 72, pp. 467-475, 2012.
[24] 張庭熏,以電泳孕核方式成長超奈米晶鑽石薄膜於矽基板與碳化鎢基板之研究,碩士論文,國立清華大學材料科學與工程學系,台灣新竹,2011
[25] A. Yariv and P. Yeh, Optical Waves in Crystals, John Wiley Publications, 2003.
[26] R. F. Davis, Diamond films and coatings: development, properties, and applications, Noyes Publications, 1993.
[27] 宋健民,超硬材料,全華科技圖書股份有限公司,台灣台北,2000。
[28] P. W. May, "CVD Diamond: A New Technology for the Future?," Endeavour, Vol. 19, pp. 101-106, 1995.
[29] T. Sharda and S. Bhattacharyya, Advances in Nanocrystalline Diamond, Encyclopedia of Nanoscience and Nanotechnology, American Scientific Publications , 2003.
[30] B. Dischler and C. Wild, "Low-pressure Synthetic Diamond: Manufacturing and Applications," Springer, 1998.
[31] A. R. Krauss, O. Auciello, D. M. Gruen, A. Jayatissa, A. Sumant, J. Tucek, D. C. Mancini, N. Moldovan, A. Erdemir, D. Ersoy, M. N. Gardos, H. G. Busmann, E. M. Meyer, and M. Q. Ding, "Ultrananocrystalline Diamond Thin Films for MEMS and Moving Mechanical Assembly Devices," Diamond and Related Materials, Vol. 10, pp. 1952-1961, 2001.
[32] J. Wang, M. A. Firestone, O. Auciello, and J. A. Carlisle, "Surface Functionalization of Ultrananocrystalline Diamond Films by Electrochemical Reduction of Aryldiazonium Salts," Langmuir, Vol. 20, pp. 11450-11456, 2004.
[33] M. A. Raza, A. Westwood, A. Brown, N. Hondow, and C. Stirling, “Characterisation of Graphite Nanoplatelets and the Physical Properties of Graphite Nanoplatelet/Silicone Composites for Thermal Interface Applications”, Carbon, Vol. 49, pp. 4269-4279, 2011.
[34] M. A. Raza, A. V. K. Westwood, and C. Stirling, “Graphite Nanoplatelet/Silicone Composites for Thermal Interface Applications,” International Symposium on Advanced Packaging Materials: Microtech, 2010.
[35] Q. H. Mu and S. Y. Feng, “Thermal Conductivity of Graphite/Silicone Rubber Prepared by Solution Intercalation,” Thermochimica Acta, Vol. 462, pp. 70-75, 2007.
[36] S. Ganguli, A. K. Roya, and D. P. Anderson, “Improved Thermal Conductivity for Chemically Functionalized Exfoliated Graphite/Epoxy Composites,” Carbon, Vol. 46, pp. 806-817, 2008.
[37] M. Kujawski, J. D. Pearse, and E. Smela, “Elastomers Filled with Exfoliated Graphite as Compliant Electrodes,” Carbon, Vol. 48, pp. 2409-2417, 2010.
[38] E. T. Thostenson and T. W. Chou, “Processing-structure-multi-functional Property Relationship in Carbon Nanotube/Epoxy Composites,” Carbon, Vol. 44, pp. 3022-3029, 2006.
[39] R. D. Cowan, “Pulse Method of Measuring Thermal Diffusivity at High Temperatures,” Journal of applied physics, Vol. 34, pp. 926-927, 1964
[40] I. D. Rosca and S. V. Hoa, “Highly Conductive Multiwall Carbon Nanotube and Epoxy Composites Produced by Three-roll Milling,” Carbon, Vol. 47, pp. 1958-1968, 2009.
[41] A. Yasmin, J. J. Luo, and I. M. Daniel, “Processing of Expanded Graphite Reinforced Polymer Nanocomposites,” Composites Science and Technology, Vol. 66, pp. 1182-1189, 2006.
[42] J. N. Lee, C. Park, and G. M. Whitesides, “Solvent Compatibility of Poly(dimethylsiloxane)-Based Microfluidic Devices,” Analytical Chemistry, Vol. 75, pp.6544-6554, 2003.
[43] H. Wiener, “Structural Determination of Paraffin Boiling Points,” Journal of the American Chemical Society, Vol. 69, pp. 17-20, 1947.
[44] ASTM E1461-07, “Standard Test Methods for Thermal Diffusivity by the Flash Method,” Annual Book of ASTM Standards, Vol. 14, 2008.
[45] R. R. Levier, M. C. Harrison, R. R. Cook, and T. H. Lane, “What is Silicone?,” Journal of Clinical Epidemiology, Vol. 48, pp. 513-517, 1995
[46] K. Yamada and H. Tetsuka, "Heat-dissipating Silicone Grease Composition," United States Patent 7538075, 2004.
[47] R. J. Samuels, and N. E. Mathis, "Orientation Specific Thermal Properties of Polyimide Film," Journal of Electronic Packaging, Transactions of the ASME, Vol. 123, pp. 273-277, 2001.
[48] R. E. Hummel, Electronic Properties of Materials, 3rd ed., Springer publication, 2000.
[49] H. Chen, I. Botef, B. Guduri, and V. V. Srinivasu, “Thermal and Bonding Properties of Nano Size Carbon Black Filled PDMS,” International Conference on Advanced Nanomaterials and Nanotechnology, 2009.
[50] L. C. Sim, S. R. Ramanan, H. Ismail, K. N. Seetharamu and T. J. Goh, “Thermal Characterization of Al2O3 and ZnO Reinforced Silicone Rubber as Thermal Pads for Heat Dissipation Purposes,” Thermochimica Acta, Vol. 430, pp. 155-165, 2005.
[51] Y. Xu, D. D. L. Chung, and C. Mroz, "Thermally Conducting Aluminum Nitride Polymer-matrix Composites," Composites - Part A: Applied Science and Manufacturing, Vol. 32, pp. 1749-1757, 2001.
[52] Y. Liu, Z. N. Gu, J. L. Margrave, and V. N. Khabashesku, “Functionalization of Nanoscale Diamond Powder : Fluoro-, Alkyl-, Amino-, and Amino Acid-Nanodiamond Derivatives, ” Chemical Materials, Vol 16, pp. 3924-3930, 2004.
[53] A. E. Aleksenskiῐ, M. V. Baῐdakova, A. Ya. Vul’, A. T. Dideῐkin, V. I. Siklitskiῐ, and S. P. Vul’, “Effect of Hydrogen on the Structure of Ultradisperse Diamond,” Physics of the Solid State, Vol. 42, pp. 1575-1578, 2000.