研究生: |
吳旻駿 Wu, Min-Chun |
---|---|
論文名稱: |
以碳纖維布捕獲二氧化碳 Capture CO2 by Carbon Fiber Cloth |
指導教授: |
談駿嵩
Tan, Chung-Sung |
口試委員: |
蔣孝澈
賴慶智 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 68 |
中文關鍵詞: | CO2捕獲 、活性碳纖維布 、電力擺盪吸附法 、胺類嫁接 、CO2吸附能力 、再生 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以活性碳纖維布 (Activated Carbon Fiber Cloth, ACFC)為吸附材,電力擺盪吸附法 (Electric Swing Adsorption, ESA)為再生技術,探討不同操作變數,如吸附溫度、再生電流 (電壓)、再生溫度及再生時間,對CO2吸附能力之影響;此外亦藉由 (1) 3-Aminopropyltriethoxysilane (APTS)密閉迴流加熱法、 (2)高溫氨氣煅燒、(3) 胺類含浸改質及 (4)胺類嫁接改質等方法,將胺類官能基嫁接於ACFC上,期藉以提升ACFC對CO2之吸附量。
實驗結果顯示,在吸附溫度35 oC以及再生溫度120 oC下,ACFC有較佳之CO2吸附能力,吸附量為13.8 mg/g;當再生溫度為120 oC時,以電流為1.53 A、電壓為5 V之條件下,再生所需能量為最低;當再生時間超過30 min以上,ACFC之吸附能力並無明顯提升,代表30 min之再生時間可將ACFC上之CO2幾乎完全脫附。
將胺類官能基嫁接於ACFC之研究結果顯示:經APTS迴流嫁接改質後的ACFC,其對CO2之吸附量減少98%,可能改質後ACFC之孔洞會被阻塞導致CO2分子無法有效進入ACFC孔洞中,造成吸附量比未改質之ACFC還要低。
ACFC經過400 oC氨氣煅燒後,在吸附溫度為35 oC下,對CO2之吸附能力相較於未改質之ACFC增加19%的吸附量;ACFC經過20 wt% MEA含浸後,在吸附溫度為45 oC下,有最大之吸附量,相較於未改質之ACFC增加28%的吸附量;再者,將MEA濃度提高,ACFC經過100 wt% MEA含浸後,在吸附溫度為45 oC下,對CO2之吸附能力相較於未改質之ACFC增加70%的吸附量。
參考文獻
An, H.; Feng, B.; Su, S. “CO2 Capture by Electrothermal Swing Adsorption with Activated Carbon Fibre Materials.” Int. J. Greenhouse Gas Control 2011, 5, 16-25.
Amundsen, T. G.; Qi, L. E.; Eimer, D. A. “Density and Viscosity of Monoethanolamine + Water + Carbon Dioxide from (25 to 80) °C.” J. Chem. Eng. Data 2009, 54, 3096-3100.
Arenillas, A.; Rubiera, F.; Parra, J. B.; Ania, C. O.; Pis, J. J. “Surface Modification of Low Cost Carbons for their Application in the Environmental Protection.” Appl. Surf. Sci. 2005, 252, 619-624.
Baker, R. W. “Future Directions of Membrane Gas Separation Technology.” Ind. Eng. Chem. Res. 2002, 41, 1393-1411.
Bezerra, D. P.; Oliverira, R. S.; Vieira, R. S.; Cavalcante Jr., C. L.; Azevedo, D. C. S. “Adsorption of CO2 on Nitrogen-Enriched Activated Carbon and Zeolite 13X.” Adsorpt.-J. Int. Adsorpt. Soc. 2011, 17, 235-246.
Bonnissel, M. P.; Luo, L.; Tondeur, D. “Rapid Thermal Swing Adsorption.” Ind. Eng. Chem. Res. 2001, 40, 2322–2334.
Chang, F. Y.; Chao, K. J.; Cheng, H. H.; Tan, C. S. “Adsorption of CO2 onto Amine-Grafted Mesoporous Silicas.” Sep. Purif. Technol. 2009, 70, 87-95.
Drage, T. C.; Arenillas, A.; Smith, K. M.; Pevida, C.; Piippo, S.;
Snape, C. E. “Preparation of Carbon Dioxide Adsorbents from the Chemical Activation of Urea-Formaldehyde and Melanine-Formaldehyde Resins.” Fuel 2007, 86, 22-31.
Fogler, H. S. “Elements of Chemical Reaction Engineering. Prentice Hall PTR.” 2006.
Franchi, R. S.; Harlick, P. J. E.; Sayari, A. “Applications of Pore Expanded Mesoporous Silica. 2. Development of a High Capacity, Water-Tolerant Adsorbent for CO2.” Ind. Eng. Chem. Res. 2005, 44, 8007-8013.
Gabriel, G.; Sauthier, G.; Fraxedas, J.; Moreno-Manas, M.; Martinez, M. T.; Miravitlles, C.; Casabo, J. “Preparation and Characterisation of Single-Walled Carbon Nanotubes Functionalised with Amines.” Carbon 2006, 44, 1891-1897.
Grande, C. A.; Ribeiro, R. P. L.; Oliveira, E. L. G.; Rodrigues, A. E. “Electric Swing Adsorption as Emerging CO2 Capture Technique.” Energy Procedia 2009, 11, 1219-1225.
Grande, C. A.; Rodrigues, A. E. “Electric Swing Adsorption for CO2 Removal from Flue Gases.” Int. J. Greenhouse Gas Control 2008, 2, 194-202.
Harlick, P. J. E.; Sayari, A. “Applications of Pore Expanded Mesoporous Silica. 3. Triamine Silane Grafting for Enhanced CO2 Adsorption.” Ind. Eng. Chem. Res. 2006, 45, 3248-3255.
Harlick, P. J. E.; Sayari, A. “Applications of Pore Expanded Mesoporous Silica. 5. Triamine Grafted Material with Exceptional CO2 Dynamic and Equilibrium Adsorption Performance.” Ind. Eng. Chem. Res. 2007, 46, 446-458.
Hartono, A.; Svendsen, H. F. “Density, Viscosity, and Excess Properties of Aqueous Solution of Diethylenetriamine (DETA).” J. Chem. Thermodynamics 2009, 41, 973-979.
Hiyoshi, N.; Yogo, K.; Yashima, T. “Adsorption of Carbon Dioxide on Amine Modified SBA-15 in the Presence of Water Vapor.” Chem. Lett. 2004, 33, 510-511.
Hiyoshi, N.; Yogo, K.; Yashima, T. “Adsorption Characteristics of Carbon Dioxide on Organically Functionalized SBA-15.” Microporous Mesoporous Mater. 2005, 84, 357-365.
Huang, H. Y.; Yang, R. T. “Amine-Grafted MCM-48 and Silica Xerogel as Superior Sorbents for Acidic Gas Removal from Natural Gas.” Ind. Eng. Chem. Res. 2003, 42, 2427-2433.
Jadhav, P. D.; Chatti, R. V.; Biniwale, R. B.; Labhsetwar, N. K.; Devotta, S.; Rayalu, S. S. “Monoethanol Amine Modified Zeolite 13X for CO2 Adsorption at Different Temperatures. ” Energy Fuels 2007, 21, 3555-3559.
Jaramillo, J.; Alvarez, P. M.; Gomez-Serrano, V. “Preparation and Ozone-Surface Modification of Activated Carbon. Thermal Stability of Oxygen Surface Groups.” Appl. Surf. Sci. 2010, 256, 5232-5236.
Khatri, R. A.; Chuang, S. S. C.; Soong, Y.; Gray, M. “Carbon Dioxide Capture by Diamine-Grafted SBA-15: a Combined Fourier Transform Infrared and Mass Spectrometry Study.” Ind. Eng. Chem. Res. 2005, 44, 3702-3708.
Kim, Y. S.; Yang, S. M. “Absorption of Carbon Dioxide through Hollow Fiber Membranes Using Various Aqueous Adsorbents.” Sep. Purif. Technol. 2000, 21, 101-109.
Kim, S.; Ida, J.; Guliants, V. V.; Lin, J. S. “Tailoring Pore Properties of MCM-48 Silica for Selective Adsorption of CO2.” J. Phys. Chem. B 2005, 109, 6287-6293.
Leal, O.; Bolívar, C.; Ovalles, C.; García, J. J.; Espidel, Y. “Reversible Adsorption of Carbon Dioxide on Amine Surface-Bonded Silica Gel.” Inorganica Chimica Acta. 1995, 240, 183-189.
Lu, C. S.; Bai, H. L.; Wu, B. L.; Su, F. S.; Hwang, J. F. “Comparative Study of CO2 Capture by Carbon Nanotubes, Activated Carbons, and Zeolites.” Energy Fuels 2008, 22, 3050-3056.
Moon, S. H.; Shim, J. W. “A Novel Process for CO2/CH4 Gas Separation on Activated Carbon Fibers-Electric Swing Adsorption.” J. Colloid Interface Sci. 2006, 298, 523-528.
Mangun, C. L.; Benak, K. R.; Economy, J.; Foster, K. L. “Surface Chemistry, Pore Sizes and Adsorption Properties of Activated Carbon Fibers and Precursors Treated with Ammonia.” Carbon 2001, 39, 1809-1820.
Olajire, A. A. “CO2 Capture and Separation Technologies for End-of-Pipe Applications- A Review.” Energy 2010, 35, 2610-2628.
Pevida, C.; Plaza, M. G.; Arias, B.; Fermoso, J.; Rubiera, F.; Pis, J. J.
“Surface Modification of Activated Carbons for CO2 Capture.” Appl. Surf. Sci. 2008, 254, 7165-7172.
Plaza, M. G.; Pevida, C.; Arias, B.; Fermoso, J.; Arenillas, A.; Rubiera, F. “Application of Thermogravimetric Analysis to the Evaluation of Aminated Solid Sorbents for CO2 Capture.” J. Therm. Anal. Calorim.
2008, 92, 601-606.
Przepiorski, J.; Skrodzewicz, M.; Morawski, A. W. “High Temperature Ammonia Treatment of Activated Carbon for Enhancement of CO2 Adsorption.” Appl. Surf. Sci. 2004, 225, 235-242.
Rodrigo, S. G.; Youssef, B.; Abdelhamid, S. “Further Investigations of CO2 Capture Using Triamine-Grafted Pore-Expanded Mesoporous Silica.” Chem. Eng. J. 2010, 158, 513-519.
Ruthven, D. M. “Principle of Adsorption and Adsorption Process.” John Wiely, New York. 1984.
Sosa, R. C.; Parton, R. F.; Neys, P. E.; Lardinois, O.; Jacobs, P. A.; Rouxhet, P. G. “Surface Modification of Carbon Black by Oxidation and its Influence on the Activity of Immobilized Catalase and Iron-Phthalocyanines” J. Mol. Catal. A: Chem. 1996, 110, 141-151
Siriwardane, R. V.; Shen, M. S.; Fisher, E. P. “Adsorption of CO2 on Zeolite at Moderate Temperatures.” Energy Fuels 2005, 19, 1153-1159.
Su, F.; Lu, C.; Kuo, S. C.; Zeng, W. “Adsorption of CO2 on Amine-Functionalized Y-Type Zeolites.” Engery Fuels 2010, 24, 1441-1448.
Su, F.; Lu, C.; Cnen, W.; Bai, H.; Hwang, J. F. “Capture of CO2 from Flue Gas via Multiwalled Carbon Nanotubes.” Sci. Total Environ. 2009, 407, 3017-3023.
Sullivan, P. D.; Rood, M. J.; Grevillot, G.; Wander, J. D.; Hay, K. J. “Activated Carbon Fiber Cloth Electrothermal Swing Adsorption System.” Environ. Sci. Technol. 2004, 38, 4865-4877.
Wang, Q.; Luo, J.; Zhong, Z.; Borgna, A. “CO2 Capture by Solid Adsorbents and their Applications : Current Status and New Trends.” Energy Environ. Sci. 2011, 4, 42-55.
Xu, X.; Song, C.; Andresen, J. M.; Miller, B. G.; Scaroni, A. W. “Novel Polyethylenimine-Modified Mesoporous Molecular Sieve of MCM-41 Type as High Capacity Adsorbent for CO2 Capture.” Energy Fuels 2002, 16, 1463-1469.
Yang, R. T. “Gas Separation by Adsorption Processes.” Butterworths, Boston. 1987.
Zhang, Z.; Xu, M.; Wang, H.; Li, Z. “Enhancement of CO2 Adsorption on High Surface Area Activated Carbon Modified by N2, H2 and Ammonia.” Chem. Eng. J. 2010, 160, 571-577.
Zhang, G.; Sun, S.; Yang, D.; Dodelet, J. P.; Sacher, E. “The Surface Analytical Characterization of Carbon Fibers Functionalized by H2SO4/HNO3 Treatment.” Carbon 2008, 46, 196-205.
Zhang, J.; Xiao, P.; Li, G.; Webley, P. A. “Effect of Flue Gas Impurities on CO2 Capture Performance From Flue Gas at Coal-Fired Power Stations by Vacuum Swing Adsorption.” Energy Procedia 2009, 1, 1115-1122.
Zheng, F.; Tran, D. N.; Busche, B. J.; Fryxell, G. E.; Addleman, R. S.; Zemanian, T. S.; Aardahl, C. L. “Ethylenediamine-Modified SBA-15 as Regenerable CO2 Sorbent.” Ind. Eng. Chem. Res. 2005, 44, 3099-3105.