簡易檢索 / 詳目顯示

研究生: 林家民
Lin, Chia-Min
論文名稱: 奈米碳管高分子複合薄膜應用於微型感測元件之研究
Application of CNTs-Polymer Composites for Micro Sensing Devices
指導教授: 方維倫
Fang, Weileun
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 137
中文關鍵詞: 奈米碳管微機電系統
外文關鍵詞: Carbon nanotube, MEMS
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米碳管擁有許多特別的材料特性,可以應用在各種不同的研究領域。為了觀察奈米碳管的特殊材料特性,如電性、光學和機械特性。因此,本論文利用微機電製程技術(Microelectromechanical systems,簡稱MEMS)開發批量化且可重複製作(Reproducible)奈米碳管微型感測元件,透過開發這些奈米碳管微型感測元件來觀察上述奈米碳管特性。本論文整合奈米碳管高分子複合薄膜於微型感測元件上。開發方法簡述如下:透過黃光微影步驟定義催化劑鐵膜圖形,將元件放入高溫爐管800°C成長垂直準直性奈米碳管,再利用高分子材料(Parylene-C)沉積於元件上,解決元件與奈米碳管附著性的問題,且經過微機電製程技術調變局部製程變化完成奈米碳管微型感測元件。利用提出的製作方法,開發電性、光學、機械特性的三項奈米碳管微型感測元件:(1)電性轉換電性奈米碳管微型感測元件,以撓性奈米碳管生物電極為例。此電極可以增加整體感測面積,降低電極阻抗。研究順利完成量測螯蝦(Crayfish)神經訊號,此電極的阻抗頻率在1kHz時為11.07kΩ,此頻率為典型神經記錄數值,降低阻抗具有改善神經電極的性能。(2)光學轉換電性奈米碳管微型感測元件,以撓性奈米碳管光感測器為例。此光感測器的光電流反應量測指出在紅光雷射照射下可以依異質介面、壓力、光強度和偏壓的函數操作。操作在大氣壓下,此光感測器的量子效率(Quantum efficiency)為0.063%,在3mTorr真空下為1.93%。(3)機械轉換電性奈米碳管微型感測元件,以奈米碳管機械感測器為例。奈米碳管壓力感測器和溫度感測器單一製作於一晶片上,量測指出奈米碳管壓力感測器的壓阻係數約為20,溫度感測器的靈敏度為-0.19%/°C。


    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 XI 第1章 前言 1 1-1 研究動機 1 1-2 奈米碳管介紹 3 1-2.1 奈米碳管結構和性質 4 1-2.2 奈米碳管電性傳輸 5 1-2.3 奈米碳管合成方式 5 1-2.4 奈米碳管成長模式 6 1-3 文獻回顧 7 1-3.1 電性轉換電性奈米碳管微型感測元件 7 1-3.2 光學轉換電性奈米碳管微型感測元件 9 1-3.3 機械轉換電性奈米碳管微型感測元件 11 1-4 研究目標 13 1-5 全文架構 14 第2章 電性轉換電性奈米碳管微型感測元件 31 2-1 設計考量 31 2-2 製作流程 32 2-3 製作結果 33 2-4 量測與討論 35 2-4.1 奈米碳管特性 35 2-4.2 奈米碳管電極的電/電化學特性 35 2-4.3 奈米碳管電極的生物訊號量測 37 2-5 小結 39 第3章 光學轉換電性奈米碳管微型感測元件 59 3-1 設計考量 59 3-2 製作流程 60 3-3 製作結果 61 3-4 量測與討論 62 3-4.1 奈米碳管光感測器光電流反應實驗架設 62 3-4.2 奈米碳管光感測器蕭基接觸光電流反應 63 3-4.3 奈米碳管光感測器光電流反應 64 3-5 小結 67 第4章 機械轉換電性奈米碳管微型感測元件 83 4-1 設計考量 83 4-2 製作流程 85 4-3 製作結果 87 4-4 量測與討論 88 4-4.1 奈米碳管壓力感測器 88 4-4.2 奈米碳管溫度感測器 89 4-5 小結 90 第5章 結論與未來工作 102 5-1 結論 102 5-2 未來工作 104 參考文獻 107 附錄A 117 附錄B 127 論文著作 134

    [1] S. J. Tans, A. R. M. Verschueren, and C. Dekker, “Room-temperature transistor based on a single carbon nanotube,” Nature, vol. 393, pp. 49-52, 1998.
    [2] Y. Zhang, and S. Iijima, “Elastic response of carbon nanotube bundles to visible light,” Physical Review Letters, vol. 82, pp. 3472-3475, 1999.
    [3] R. J. Grow, Q. Wang, J. Cao, D. Wang, and H. Dai, “Piezoresistance of carbon nanotubes on deformable thin-film membranes,” Applied Physics Letters, vol. 86, pp. 093104, 2005.
    [4] J. Fraden, Handbook of Modern Sensors, New York: Springer-Verlag, 1996.
    [5] C. Stampfer, T. Helbling, D. Obergfell, B. Schoberle, M. K. Tripp, A. Jungen, S. Roth, V. M. Bright, and C. Hierold, “Fabrication of single-walled carbon-nanotube-based pressure sensors,” Nano Letters, vol. 6, pp. 233-237, 2006.
    [6] T. Gabay, M. Ben-David, I. Kalifa, R. Sorkin, Z. R. Abrams, E. Ben-Jacob, and Y. Hanein, “Electro-chemical and biological properties of carbon nanotube based multi-electrode arrays,” Nanotechnology, vol. 18, pp. 035201, 2007.
    [7] T. Kawano, H. C. Chiamori, M. Suter, Q. Zhou, B. D. Sosnowchik, and L. Lin, “An electrothermal carbon nanotube gas sensor,” Nano Letters, vol. 7, pp. 3686-3690, 2007.
    [8] L. Liu, and Y. Zhang, “Multi-wall carbon nanotube as a new infrared detected material,” Sensors & Actuators: A. Physical, vol. 116, pp. 394-397, 2004.
    [9] G. Pirio, P. Legagneux, D. Pribat, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, and W. I. Milne, “Fabrication and electrical characteristics of carbon nanotube field emission microcathodes with an integrated gate electrode,” Nanotechnology, vol. 13, pp. 1-4, 2002.
    [10] J. M. Bustillo, R. T. Howe, and R. S. Muller, “Surface micromachining for microelectromechanical systems,” Proceedings of the IEEE, vol. 86, pp. 1552-1574, 1998.
    [11] J. Hsieh, and W. Fang, “A boron etch-stop assisted lateral silicon etching process for improved high-aspect-ratio silicon micromachining and its applications,” Journal of Micromechanics and Microengineering, vol. 12, pp. 574-581, 2002.
    [12] S. E. Alper, I. E. Ocak, and T. Akin, “Ultrathick and high-aspect-ratio nickel microgyroscope using EFAB multilayer additive electroforming,” Journal of Microelectromechanical Systems, vol. 16, pp. 1025-1035, 2007.
    [13] G. A. Karp, A. Ya'akobovitz, M. David-Pur, Z. Ioffe, O. Cheshnovsky, S. Krylov, and Y. Hanein, “Integration of suspended carbon nanotubes into micro-fabricated devices,” Journal of Micromechanics and Microengineering, vol. 19, pp. 085021, 2009.
    [14] T. W. Tombler, C. Zhou, L. Alexseyev, J. Kong, H. Dai, L. Liu, C. S. Jayanthi, M. Tang, and S. Y. Wu, “Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation,” Nature, vol. 405, pp. 769-772, 2000.
    [15] R. Agrawal, B. Peng, E. E. Gdoutos, and H. D. Espinosa, “Elasticity size effects in ZnO nanowires - a combined experimental-computational approach,” Nano Letters, vol. 8, pp. 3668-3674, 2008.
    [16] M. E. Spotnitz, D. Ryan, and H. A. Stone, “Dip coating for the alignment of carbon nanotubes on curved surfaces,” Journal of Materials Chemistry, vol. 14, pp. 1299-1302, 2004.
    [17] C. Lim, D. H. Min, and S. B. Lee, “Direct patterning of carbon nanotube network devices by selective vacuum filtration,” Applied Physics Letters, vol. 91, pp. 243117, 2007.
    [18] R. Krupke, F. Hennrich, H. B. Weber, M. M. Kappes, and H. Lohneysens, “Simultaneous deposition of metallic bundles of single-walled carbon nanotubes using ac-dielectrophoresis,” Nano Letters, vol. 3, pp. 1019-1023, 2003.
    [19] T. V. Sreekumar, T. Liu, S. Kumar, L. M. Ericson, R. H. Hauge, and R. E. Smalley, “Single-wall carbon nanotube films,” Chemistry of Materials, vol. 15, pp. 175-178, 2003.
    [20] M. A. Meitl, Y. Zhou, A. Gaur, S. Jeon, M. L. Usrey, M. S. Strano, and J. A. Rogers, “Solution casting and transfer printing single-walled carbon nanotube films,” Nano Letters, vol. 4, pp. 1643-1647, 2004.
    [21] S. J. Kang, C. Kocabas, T. Ozel, M. Shim, N. Pimparkar, M. A. Alam, S. V. Rotkin, and J. A. Rogers, “High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes,” Nature Nanotechnology, vol. 2, pp. 230-236, 2007.
    [22] Y. Zhou, L. Hu, and G. Gruner, “A method of printing carbon nanotube thin films,” Applied Physics Letters, vol. 88, pp. 123109, 2006.
    [23] L. Hu, G. Gruner, J. Gong, C. J. Kim, and B. Hornbostel, “Electrowetting devices with transparent single-walled carbon nanotube electrodes,” Applied Physics Letters, vol. 90, pp. 093124, 2007.
    [24] M. Chen, C. M. Chen, S. C. Shi, and C. F. Chen, “Low-temperature synthesis multiwalled carbon nanotubes by microwave plasma chemical vapor deposition using CH4–CO2 gas mixture,” Japanese Journal of Applied Physics, vol. 42, pp. 614-619, 2003.
    [25] M. Shao, D. Wang, G. Yu, B. Hu, W. Yu, and Y. Qian, “The synthesis of carbon nanotubes at low temperature via carbon suboxide disproportionation,” Carbon, vol. 42, pp. 183-185, 2004.
    [26] S. Hofmann, C. Ducati, B. Kleinsorge, and J. Robertson, “Direct growth of aligned carbon nanotube field emitter arrays onto plastic substrates,” Applied Physics Letters, vol. 83, pp. 4661-4663, 2003.
    [27] Y. J. Jung, S. Kar, S. Talapatra, C. Soldano, G. Viswanathan, X. Li, Z. Yao, F. S. Ou, A. Avadhanula, and R. Vajtai, “Aligned carbon nanotube-polymer hybrid architectures for diverse flexible electronic applications,” Nano Letters, vol. 6, pp. 413-418, 2006.
    [28] L. Ci, J. Suhr, V. Pushparaj, X. Zhang, and P. M. Ajayan, “Continuous carbon nanotube reinforced composites,” Nano Letters, vol. 8, pp. 2762-2766, 2008.
    [29] C. Y. Wang, T. H. Chen, S. C. Chang, T. S. Chin, and S. Y. Cheng, “Flexible field emitter made of carbon nanotubes microwave welded onto polymer substrates,” Applied Physics Letters, vol. 90, pp. 103111, 2007.
    [30] T. H. Chen, T. Y. Tsai, K. C. Hsieh, S. C. Chang, N. H. Tai, and H. L. Chen, “Two-dimensional metallic nanobowl array transferred onto thermoplastic substrates by microwave heating of carbon nanotubes,” Nanotechnology, vol. 19, pp. 465303, 2008.
    [31] E. Artukovic, M. Kaempgen, D. S. Hecht, S. Roth, and G. Gruner, “Transparent and flexible carbon nanotube transistors,” Nano Letters, vol. 5, pp. 757-760, 2005.
    [32] A. Schindler, J. Brill, N. Fruehauf, J. P. Novak, and Z. Yaniv, “Solution-deposited carbon nanotube layers for flexible display applications,” Physica E, vol. 37, pp. 119-123, 2007.
    [33] S. H. Hur, O. O. Park, and J. A. Rogers, “Extreme bendability of single-walled carbon nanotube networks transferred from high-temperature growth substrates to plastic and their use in thin-film transistors,” Applied Physics Letters, vol. 86, pp. 243502, 2005.
    [34] D. Zhang, K. Ryu, X. Liu, E. Polikarpov, J. Ly, M. E. Tompson, and C. Zhou, “Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes,” Nano Letters, vol. 6, pp. 1880-1886, 2006.
    [35] Y. Zhao, T. Tong, L. Delzeit, A. Kashani, M. Meyyappan, and A. Majumdar, “Interfacial energy and strength of multiwalled-carbon-nanotube-based dry adhesive,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 24, pp. 331-335, 2006.
    [36] S. C. Lim, H. K. Choi, H. J. Jeong, Y. I. Song, G. Y. Kim, K. T. Jung, and Y. H. Lee, “A strategy for forming robust adhesion with the substrate in a carbon-nanotube field-emission array,” Carbon, vol. 44, pp. 2809-2815, 2006.
    [37] H. Nishijima, S. Kamo, S. Akita, Y. Nakayama, K. I. Hohmura, S. H. Yoshimura, and K. Takeyasu, “Carbon-nanotube tips for scanning probe microscopy: Preparation by a controlled process and observation of deoxyribonucleic acid,” Applied Physics Letters, vol. 74, pp. 4061-4063, 1999.
    [38] L. Zhu, Y. Sun, D. W. Hess, and C. P. Wong, “Well-aligned open-ended carbon nanotube architectures: an approach for device assembly,” Nano Letters, vol. 6, pp. 243-247, 2006.
    [39] H. C. Su, C. H. Chen, Y. C. Chen, D. J. Yao, H. Chen, Y. C. Chang, and T. R. Yew, “Improving the adhesion of carbon nanotubes to a substrate using microwave treatment,” Carbon, vol. 48, pp. 805-812, 2010.
    [40] S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, pp. 56-58, 1991.
    [41] S. Iijima, and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter,” Nature, vol. 363, pp. 603-605, 1993.
    [42] C. H. Kiang, M. Endo, P. M. Ajayan, G. Dresselhaus, and M. S. Dresselhaus, “Size effects in carbon nanotubes,” Physical Review Letters, vol. 81, pp. 1869-1872, 1998.
    [43] M. S. Dresselhaus, G. Dresselhaus, and R. Saito, “Physics of carbon nanotubes,” Carbon, vol. 33, pp. 883-891, 1995.
    [44] J. P. Salvetat, J. M. Bonard, N. H. Thomson, A. J. Kulik, L. Forro, W. Benoit, and L. Zuppiroli, “Mechanical properties of carbon nanotubes,” Applied Physics A: Materials Science & Processing, vol. 69, pp. 255-260, 1999.
    [45] Q. Li, C. Liu, X. Wang, and S. Fan, “Measuring the thermal conductivity of individual carbon nanotubes by the Raman shift method,” Nanotechnology, vol. 20, pp. 145702, 2009.
    [46] Z. Yao, C. L. Kane, and C. Dekker, “High-field electrical transport in single-wall carbon nanotubes,” Physical Review Letters, vol. 84, pp. 2941-2944, 2000.
    [47] B. Q. Wei, R. Vajtai, and P. M. Ajayan, “Reliability and current carrying capacity of carbon nanotubes,” Applied Physics Letters, vol. 79, pp. 1172-1174, 2001.
    [48] S. Dohn, J. Kjelstrup-Hansen, D. N. Madsen, K. Molhave, and P. Boggild, “Multi-walled carbon nanotubes integrated in microcantilevers for application of tensile strain,” Ultramicroscopy, vol. 105, pp. 209-214, 2005.
    [49] P. G. Collins, M. S. Arnold, and P. Avouris, “Engineering carbon nanotubes and nanotube circuits using electrical breakdown,” Science, vol. 292, pp. 706-709, 2001.
    [50] D. J. Yang, S. G. Wang, Q. Zhang, P. J. Sellin, and G. Chen, “Thermal and electrical transport in multi-walled carbon nanotubes,” Physics Letters A, vol. 329, pp. 207-213, 2004.
    [51] S. Frank, P. Poncharal, Z. L. Wang, and W. A. de Heer, “Carbon nanotube quantum resistors,” Science, vol. 280, pp. 1744-1746, 1998.
    [52] M. S. Dresselhaus, G. Dresselhaus, and P. Avouris, Carbon Nanotubes Synthesis, Structure, Properties, and Applications, Berlin: Springer, 2001.
    [53] S. B. Sinnott, R. Andrews, D. Qian, A. M. Rao, Z. Mao, E. C. Dickey, and F. Derbyshire, “Model of carbon nanotube growth through chemical vapor deposition,” Chemical Physics Letters, vol. 315, pp. 25-30, 1999.
    [54] O. F. Schanne, M. Lavallee, R. Laprade, and S. Gagne, “Electrical properties of glass microelectrodes,” Proceedings of the IEEE, vol. 56, pp. 1072-1082, 1968.
    [55] U. Egert, B. Schlosshauer, S. Fennrich, W. Nisch, M. Fejtl, T. Knott, T. Muller, and H. Hammerle, “A novel organotypic long-term culture of the rat hippocampus on substrate-integrated multielectrode arrays,” Brain Research Protocols vol. 2, pp. 229-242, 1998.
    [56] L. R. Hochberg, M. D. Serruya, G. M. Friehs, J. A. Mukand, M. Saleh, A. H. Caplan, A. Branner, D. Chen, R. D. Penn, and J. P. Donoghue, “Neuronal ensemble control of prosthetic devices by a human with tetraplegia,” Nature, vol. 442, pp. 164-171, 2006.
    [57] E. Zrenner, “Will retinal implants restore vision?,” Science, vol. 295, pp. 1022-1025, 2002.
    [58] B. S. Wilson, D. T. Lawson, J. M. Muller, R. S. Tyler, and J. Kiefer, “Cochlear implants: some likely next steps,” Annual Review of Biomedical Engineering, vol. 5, pp. 207-249, 2003.
    [59] P. Manos, J. J. Pancrazio, M. G. Coulombe, W. Ma, and D. A. Stenger, “Characterization of rat spinal cord neurons cultured in defined media on microelectrode arrays,” Neuroscience Letters, vol. 271, pp. 179-182, 1999.
    [60] Y. H. Kim, C. Lee, K. M. Ahn, Y. J. Kim, and M. Lee, “Function-inspection scheme for an injured peripheral nerve using a polymer based microelectrode array,” Sensors & Actuators: A. Physical, vol. 139, pp. 58-65, 2007.
    [61] P. K. Campbell, K. E. Jones, R. J. Huber, K. W. Horch, and R. A. Normann, “A silicon-based, three-dimensional neural interface: manufacturingprocesses for an intracortical electrode array,” IEEE Transactions on Biomedical Engineering, vol. 38, pp. 758-768, 1991.
    [62] P. Griss, P. Enoksson, H. K. Tolvanen-Laakso, P. Merilainen, S. Ollmar, and G. Stemme, “Micromachined electrodes for biopotential measurements,” Journal of Microelectromechanical Systems, vol. 10, pp. 10-16, 2001.
    [63] P. Norlin, M. Kindlundh, A. Mouroux, K. Yoshida, and U. G. Hofmann, “A 32-site neural recording probe fabricated by DRIE of SOI substrates,” Journal of Micromechanics and Microengineering, vol. 12, pp. 414-419, 2002.
    [64] H. Y. Chu, T. Y. Kuo, B. Chang, S. W. Lu, C. C. Chiao, and W. Fang, “Design and fabrication of novel three-dimensional multi-electrode array using SOI wafer,” Sensors & Actuators: A. Physical, vol. 130, pp. 254-261, 2006.
    [65] T. H. Yoon, E. J. Hwang, D. Y. Shin, S. I. Park, S. J. Oh, S. C. Jung, H. C. Shin, and S. J. Kim, “A micromachined silicon depth probe for multichannel neural recording,” IEEE Transactions on Biomedical Engineering, vol. 47, pp. 1082-1087, 2000.
    [66] H. Y. Chan, D. M. Aslam, J. A. Wiler, and B. Casey, “A novel diamond microprobe for neuro-chemical and -electrical recording in neural prosthesis,” Journal of Microelectromechanical Systems, vol. 18, pp. 511 - 521, 2009.
    [67] V. Lovat, D. Pantarotto, L. Lagostena, B. Cacciari, M. Grandolfo, M. Righi, G. Spalluto, M. Prato, and L. Ballerini, “Carbon nanotube substrates boost neuronal electrical signaling,” Nano Letters, vol. 5, pp. 1107-1110, 2005.
    [68] T. E. McKnight, A. V. Melechko, B. L. Fletcher, S. W. Jones, D. K. Hensley, D. B. Peckys, G. D. Griffin, M. L. Simpson, and M. N. Ericson, “Resident neuroelectrochemical interfacing using carbon nanofiber arrays,” Journal of Physical Chemistry B, vol. 110, pp. 15317-15327, 2006.
    [69] E. Ben-Jacob, and Y. Hanein, “Carbon nanotube micro-electrodes for neuronal interfacing,” Journal of Materials Chemistry, vol. 18, pp. 5181-5186, 2008.
    [70] K. Wang, H. A. Fishman, H. Dai, and J. S. Harris, “Neural stimulation with a carbon nanotube microelectrode array,” Nano Letters, vol. 6, pp. 2043-2048, 2006.
    [71] A. Mazzatenta, M. Giugliano, S. Campidelli, L. Gambazzi, L. Businaro, H. Markram, M. Prato, and L. Ballerini, “Interfacing neurons with carbon nanotubes: electrical signal transfer and synaptic stimulation in cultured brain circuits,” Journal of Neuroscience, vol. 27, pp. 6931-6936, 2007.
    [72] G. Gabriel, R. Gomez, M. Bongard, N. Benito, E. Fernandez, and R. Villa, “Easily made single-walled carbon nanotube surface microelectrodes for neuronal applications ” Biosensors and Bioelectronics, vol. 24, pp. 1942-1948 2009.
    [73] E. W. Keefer, B. R. Botterman, M. I. Romero, A. F. Rossi, and G. W. Gross, “Carbon nanotube coating improves neuronal recordings,” Nature Nanotechnology, vol. 3, pp. 434-439, 2008.
    [74] K. Kim, K. R. Lee, Y. K. Kim, D. S. Lee, N. K. Cho, W. H. Kim, K. B. Park, H. D. Park, Y. K. Park, J. H. Kim, and J. J. Pak, “3-axes flexible tactile sensor fabricated by Si micromachining and packaging technology,” IEEE MEMS Conference, Istanbul, Turkey, January, 2006, pp. 678-681.
    [75] S. R. Forrest, “The path to ubiquitous and low-cost organic electronic appliances on plastic,” Nature, vol. 428, pp. 911-918, 2004.
    [76] J. Engel, J. Chen, Z. Fan, and C. Liu, “Polymer micromachined multimodal tactile sensors,” Sensors & Actuators: A. Physical, vol. 117, pp. 50-61, 2005.
    [77] H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, “High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering,” Applied Physics Letters, vol. 89, pp. 112123, 2006.
    [78] C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, “Plastic solar cells,” Advanced Functional Materials, vol. 11, pp. 15-26, 2001.
    [79] P. Peumans, V. Bulovic', and S. R. Forrest, “Efficient, high-bandwidth organic multilayer photodetectors,” Applied Physics Letters, vol. 76, pp. 3855-3857, 2000.
    [80] V. J. Lumelsky, M. S. Shur, and S. Wagner, “Sensitive skin,” IEEE Sensors Journal, vol. 1, pp. 41-51, 2001.
    [81] E. Fortunato, L. Pereira, H. Aguas, I. Ferreira, and R. Martins, “Flexible position sensitive photodetectors based on a-Si: H heterostructures,” Sensors & Actuators: A. Physical, vol. 116, pp. 119-124, 2004.
    [82] B. Pradhan, K. Setyowati, H. Liu, D. H. Waldeck, and J. Chen, “Carbon nanotube-polymer nanocomposite infrared sensor,” Nano Letters, vol. 8, pp. 1142-1146, 2008.
    [83] K. Yoshino, S. Lee, A. Fujii, H. Nakayama, W. Schneider, A. Naka, and M. Ishikawa, “Near IR and UV enhanced photoresponse of C60-doped semiconducting polymer photodiode,” Advanced Materials, vol. 11, pp. 1382-1385, 1999.
    [84] S. O. Kasap, Optoelectronics and Photonics, New Jersey: Prentice Hall, Inc., 2001.
    [85] H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba, “Optical properties of single-wall carbon nanotubes,” Synthetic Metals, vol. 103, pp. 2555-2558, 1999.
    [86] M. Freitag, Y. Martin, J. A. Misewich, R. Martel, and P. Avouris, “Photoconductivity of single carbon nanotubes,” Nano Letters, vol. 3, pp. 1067-1071, 2003.
    [87] M. E. Itkis, F. Borondics, A. Yu, and R. C. Haddon, “Bolometric infrared photoresponse of suspended single-walled carbon nanotube films,” Science, vol. 312, pp. 413-416, 2006.
    [88] R. J. Chen, N. R. Franklin, J. Kong, J. Cao, T. W. Tombler, Y. Zhang, and H. Dai, “Molecular photodesorption from single-walled carbon nanotubes,” Applied Physics Letters, vol. 79, pp. 2258-2260, 2001.
    [89] J. Zhang, N. Xi, H. Chen, and K. W. C. Lai, “Fabrication and experimental testing of individual multi-walled carbon nanotube (CNT) based infrared sensors,” IEEE Sensors Conference, Atlanta, USA, October, 2007, pp. 511-514.
    [90] N. T. Hong, J. H. Yim, K. H. Koh, S. Lee, P. N. Minh, and P. H. Khoi, “Field electron emission from free-standing flexible PDMS-supported carbon-nanotube-array films,” Journal of Vacuum Science & Technology B, vol. 26, pp. 778-781, 2008.
    [91] C. Hierold, A. Jungen, C. Stampfer, and T. Helbling, “Nano electromechanical sensors based on carbon nanotubes,” Sensors & Actuators: A. Physical, vol. 136, pp. 51-61, 2007.
    [92] C. Gau, C. L. Chan, S. H. Shiau, C. W. Liu, and S. H. Ting, “Nano temperature sensor using selective lateral growth of carbon nanotube between electrodes,” IEEE Nanotechnology Conference, Nagoya, Japan, July, 2005, pp. 857-860.
    [93] Q. H. Zhang, K. M. Fung, C. T. Chow, J. Li, and P. Leong, “Parylene-C embedded CNT-based MEMS piezoresistive pressure sensors using DEP nanpassembly,” IEEE Nanotechnology Conference, Cincinnati, USA, July, 2006, pp. 802-805.
    [94] C. Gau, H. S. Ko, and H. T. Chen, “Piezoresistive characteristics of MWNT nanocomposites and fabrication as a polymer pressure sensor,” Nanotechnology, vol. 20, pp. 185503, 2009.
    [95] J. Lu, M. Lu, A. Bermak, and Y. K. Lee, “Study of piezoresistance effect of carbon nanotube-PDMS composite materials for nanosensors,” IEEE Nanotechnology Conference, Hong Kong, August, 2007, pp. 1240-1243.
    [96] K. M. Fung, and J. Li, “Ultra-low-power polymer thin film encapsulated carbon nanotube thermal sensors,” IEEE Nanotechnology Conference, Munic, Germany, August, 2004, pp. 158-160.
    [97] W. K. Hsu, H. Y. Chu, T. H. Chen, T. W. Cheng, and W. Fang, “An exceptional bimorph effect and a low quality factor from carbon nanotube-polymer composites,” Nanotechnology, vol. 19, pp. 135304, 2008.
    [98] W. Fang, H. Y. Chu, W. K. Hsu, T. W. Cheng, and N. H. Tai, “Polymer-reinforced, aligned multiwalled carbon nanotube composites for microelectromechanical systems applications,” Advanced Materials, vol. 17, pp. 2987-2992, 2005.
    [99] A. Behnam, L. Noriega, Y. Choi, Z. Wu, A. G. Rinzler, and A. Ural, “Resistivity scaling in single-walled carbon nanotube films patterned to submicron dimensions,” Applied Physics Letters, vol. 89, pp. 093107, 2006.
    [100] S. Barazzouk, S. Hotchandani, K. Vinodgopal, and P. V. Kamat, “Single-wall carbon nanotube films for photocurrent generation. a prompt response to visible-light irradiation,” Journal of Physical Chemistry B, vol. 108, pp. 17015-17018, 2004.
    [101] S. Y. Lee, H. W. Tung, W. C. Chen, and W. Fang, “Thermal actuated solid tunable lens,” IEEE Photonics Technology Letters, vol. 18, pp. 2191-2193, 2006.
    [102] W. A. deHeer, W. S. Bacsa, A. Chatelain, T. Gerfin, R. Humphrey-Baker, L. Forro, and D. Ugarte, “Aligned carbon nanotube films: production and optical and electronic properties,” Science, vol. 268, pp. 845-847, 1995.
    [103] P. Avouris, “Carbon nanotube electronics,” Chemical Physics, vol. 281, pp. 429-445, 2002.
    [104] Y. Hayashi, T. Tokunaga, K. Kaneko, and Z. Horita, “Characterization of transport properties of multiwalled carbon nanotube networks by microwave plasma chemical vapor deposition,” Diamond & Related Materials, vol. 15, pp. 1138-1142, 2006.
    [105] C. Lan, P. B. Amama, T. S. Fisher, and R. G. Reifenberger, “Correlating electrical resistance to growth conditions for multiwalled carbon nanotubes,” Applied Physics Letters, vol. 91, pp. 093105, 2007.
    [106] S. Lu, and B. Panchapakesan, “Photoconductivity in single wall carbon nanotube sheets,” Nanotechnology, vol. 17, pp. 1843-1850, 2006.
    [107] P. G. Collins, K. Bradley, M. Ishigami, and A. Zettl, “Extreme oxygen sensitivity of electronic properties of carbon nanotubes,” Science, vol. 287, pp. 1801-1804, 2000.
    [108] M. Akbi, and A. Lefort, “Work function measurements of contact materials for industrial use,” Journal of Physics D: Applied Physics, vol. 31, pp. 1301-1308, 1998.
    [109] T. Zhang, S. Mubeen, N. V. Myung, and M. A. Deshusses, “Recent progress in carbon nanotube-based gas sensors,” Nanotechnology, vol. 19, pp. 332001, 2008.
    [110] H. E. Romero, K. Bolton, A. Rosen, and P. C. Eklund, “Atom collision-induced resistivity of carbon nanotubes,” Science, vol. 307, pp. 89-93, 2005.
    [111] G. Liu, Z. Liu, Y. Zhao, K. Zheng, H. Huang, W. Ma, C. Gu, L. Sun, and S. Xie, “Large photocurrent generated by a camera flash in single-walled carbon nanotubes,” Journal of Physics D: Applied Physics, vol. 40, pp. 6898-6901, 2007.
    [112] D. H. Lien, W. K. Hsu, H. W. Zan, N. H. Tai, and C. H. Tsai, “Photocurrent amplification at carbon nanotube-metal contacts,” Advanced Materials, vol. 18, pp. 98-103, 2006.
    [113] I. A. Levitsky, and W. B. Euler, “Photoconductivity of single-wall carbon nanotubes under continuous-wave near-infrared illumination,” Applied Physics Letters, vol. 83, pp. 1857-1859, 2003.
    [114] K. Ikeda, H. Kuwayama, T. Kobayashi, T. Watanabe, T. Nishikawa, T. Yoshida, and K. Harada, “Three-dimensional micromachining of silicon pressure sensor integrating resonant strain gauge on diaphragm,” Sensors & Actuators: A. Physical, vol. 23, pp. 1007-1010, 1990.
    [115] X. Xiong, C. L. Chen, P. Ryan, A. A. Busnaina, Y. J. Jung, and M. R. Dokmeci, “Directed assembly of high density single-walled carbon nanotube patterns on flexible polymer substrates,” Nanotechnology, vol. 20, pp. 295302, 2009.
    [116] T. Y. Tsai, C. Y. Lee, N. H. Tai, and W. H. Tuan, “Transfer of patterned vertically aligned carbon nanotubes onto plastic substrates for flexible electronics and field emission devices,” Applied Physics Letters, vol. 95, pp. 013107, 2009.
    [117] A. Naeemi, and J. D. Meindl, “Physical modeling of temperature coefficient of resistance for single-and multi-wall carbon nanotube interconnects,” IEEE Electron Device Letters, vol. 28, pp. 135-138, 2007.
    [118] M. S. Raman, T. Kifle, E. Bhattacharya, and K. N. Bhat, “Physical model for the resistivity and temperature coefficient of resistivity in heavily doped polysilicon,” IEEE Transactions on Electron Devices, vol. 53, pp. 1885-1892, 2006.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE