簡易檢索 / 詳目顯示

研究生: 楊長沂
Chang-Yi Yang
論文名稱: 利用表面聲波元件研究自組裝單分子層上奈米金顆粒之吸附
Study of Au Nanoparticle Adsorption on Self-Assembled Monolayer by Surface Acoustic Wave Sensing
指導教授: 果尚志
Dr. S. Gwo
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 76
中文關鍵詞: 表面聲波自組裝單分子層奈米金顆粒
外文關鍵詞: Surface Acousic Wave, Self-Assembled Monolayer, Au Nanoparticle
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 表面聲波元件因具有體積小、重量輕、低成本、製程與IC技術相容性高及高性能濾波功能等優點,並且可以針對各項需求選用不同的壓電材料,製成不同波段的濾波器,是目前無線通訊系統及手機的關鍵零組件。除了在訊號處理表現突出之外,近幾年來,表面聲波元件以其高質量靈敏度的優異特性,更進一步應用於生物感測領域,表面聲波元件可感測質量、密度、溼度、濃度、氣體辨識或黏滯度等。
    在本文中我們利用表面聲波元件及回授放大器來製作表面聲波振盪器。其表面聲波元件之中心頻率及插入損耗分別為121MHz和
    -6.945 dB。在製作完振盪器後其振盪頻率與輸出功率分別為121MHz與15dBm。在本文感測實驗中,在表面聲波振盪器上成長末端基為-SH及-NH2的自組裝單分子膜,接著並吸附金奈米粒子。由頻譜分析儀中可以得知表面聲波元件因質量負載效應而造成頻率偏移,藉此比較兩種不同的自組裝單分子膜,其吸附金奈米粒子的程度及質量變化與頻率偏移的關係。最後,並可將其應用於生物感測中。


    Surface acoustic wave (SAW) device have advantages of small volume, lightness, low costs, high IC-compatibility, and better filtering performance. Different piezoelectric materials can be selected to fabricate various filters with dissimilar wave band, and these SAW filters have become key components of wireless communication and mobile phone. Except for satisfactory signal processing application, SAW devices, which have excellent characteristic of high mass sensitivity, have been further applied to bio-sensing areas in the recent decade. SAW devices can be used to sense mass, density, humidity, concentration, vapor recognition, viscosity, and so on.
    This thesis presents a SAW oscillator using SAW device and feedback amplifier. The center frequency and the insertion loss of SAW device are 121MHz and -6.945dB respectively. The output frequency and power of oscillator using SAW device is 121MHz and 15dBm respectively. We deposition Self-Assembled Monolayer and adsorption Au nanoparticle on SAW device. The frequency shift on SAW device due to mass loading effect on spectrum analyzer. We comparison the relationship between the mass loading and the frequency shift that adsorption Au nanoparticle on SAW device. In the end, we can establish SAW platform to perform bio-chemical sensing.

    第一章 序論..........................................1 1-1 前言及文獻回顧...............................1 1-2 研究動機.....................................3 1-3 章節介紹.....................................6 第二章 基本原理......................................7 2-1 表面聲波元件之原理...........................7 2-2 壓電效應.....................................8 2-2-1壓電性之產生............................8 2-2-2 壓電方程式.............................8 2-2-3 機電耦合係數..........................10 2-2-4 壓電材料..............................11 2-3 表面聲波感測機制............................12 2-4 表面聲波感測之量測機制......................14 2-5 質量負載效應................................15 2-6 電漿表面改質................................17 2-7 表面聲波元件的基本設計原理..................19 2-7-1 傳播波速(Vp)量測....................21 2-7-2 插入損失(IL)量測....................21 2-8 儀器量測原理................................22 2-8-1 網路分析儀............................22 2-8-2 S參數量測............................23 第三章 實驗過程與系統建立...........................25 3-1 光罩及基板選擇..............................25 3-2 表面聲波元件製作............................26 3-3 表面聲波元件之量測..........................31 3-4 表面聲波振盪器電路的設計與製作..............33 3-5 自組裝單分子膜的成長方法....................39 3-5-1(-SH)單分子膜成長的實驗步驟..........39 3-5-2(-NH2)單分子膜成長的實驗步驟.........40 第四章 實驗結果.....................................42 4-1 表面聲波元件特性量測結果....................42 4-2表面聲波振盪器電路量測結果...................43 4-3自組裝單分子膜吸附奈米金顆粒之情形...........45 4-4 -SH金奈米粒子吸附及頻率偏移情形.............48 4-5 -NH2金奈米粒子吸附及頻率偏移情形............57 4-6 -SH與-NH2金奈米粒子吸附及頻率偏移情形比較...65 4-7表面聲波元件的質量負載效應...................68 第五章 結論及未來工作...............................71 5-1結論.........................................71 5-2未來工作規劃.................................72 參考文獻............................................73

    【1】Lord Rayleigh, “On waves propagated along the plane surface of an elastic solid” ,Proc. London Math. Soc., Vol. 17, pp.4, 1885.
    【2】R. M. White, and F. W. Voltmer, “Direct piezoelectric coupling to surface elastic waves”, Appl. Phys. Lett. 7, pp.314-316, 1965.
    【3】J. J. Campbell and W. R. Jones, “A method for estimation optical crystal cuts and propagation directions for excitation of piezoelectric surface waves”, IEEE Trans. Son. Ultrason., Vol. 15, 1968.
    【4】A. H. Fahmy and E. L. Adler, “Propagation of acoustic surface waves in multilayers:A matrix description”, Appl. Lett., Vol. 22, No. 10, pp.495-497, 1973.
    【5】C. K. Campbell, “Surface Acoustic Wave Devices for Mobile and Wireless Communications”, 1998.
    【6】朱募道, “表面聲波元件原理與應用”, 新電子-光電元件專輯, pp.183-186, 1994年3月.
    【7】王宏文, “淺談表面聲波感測器”, 工業材料-精密陶瓷專輯, 第89期, pp.44-45, 83年5月.
    【8】T. Moriizumi, A. Saitou, T. Nomura, “Multi-channel SAW chemical sensor using 90MHz SAW resonator and partial casting molecular films,”IEEE Ultrasonics Symposium, pp.499-502, 1994
    【9】V. Hinrichsen, G. Scholl, M. Schubert, T. Ostertag,“Online monitoring of high-voltage metal-oxide surge arresters by wireless passive surface acoustic wave temperature sensors,” Eleventh International Symposium, pp.238-241, 1999.
    【10】S. Ballandras, W. Daniau, G. Martin, P. Berthelot, “Wireless temperature sensor using saw resonators for immersed and biological application,”Eleventh International Symposium, pp.445-448, 2002.
    【11】R. S. Falconer, R. Lec, J.F. Vetelino, Z. Xu,“Optimization of a SAW metal oxide semiconductor gas sensor,”IEEE Ultrasonics Symposium, pp.585-590, 1989.
    【12】G. Watson, W. Horton, E. Staples, “Gas chromatography utilizing SAW sensors,”IEEE Ultrasonics Symposium, pp.305-309, 1991.
    【13】M. Rapp, H. Gemmeke, J. Reichert, A. Voigt,“Analytical microsystem for organic gas detection based on SAW devices,” IEEE Ultrasonics Symposium, pp.619-622, 1994.
    【14】李清鋒, “生物感測表面聲波元件之製作與應用”, 國立台灣師範大學機電科技研究所碩士論文, 2003.
    【15】D. D. Stubbs, IEEE Sensor. 2, 4, 294(2002)
    【16】C. K. Campbell,“Chapter 2:Basic of piezoelectricity and acoustic waves”, Surface acoustic wave devices for mobile and wireless communication, 1998.
    【17】Colin Campbell:”Chapter 2 Basic of Acoustic Waves and Piezoelectricity”, Surface Acoustic Wave Devices and Their Signal Processing Applications, 1989.
    【18】吳朗, “電子陶瓷壓電”,全欣資訊圖書股份有限公司,83年.
    【19】Ballantine, David Stephen, “Acoustic wave sensors : theory, design, and physico-chemical applications”, 1996.
    【20】Ih-Houng Loh,“Plasma Surface Modification in Biomedical Application”, AST Technical Journal.
    【21】C. K. Campbell, “Chapter 3:Principles of linear-phase SAW filter design”, Surface acoustic wave devices for mobile and wireless communication, 1998.
    【22】陳建興, “氮化鋁薄膜在鈮酸鋰基板上之表面聲波特性”, 國立中山大學電機工程研究所碩士論文, 2001.
    【23】H. Matthews, “Surface Wave Filters Design, Construction, and Use”, John Wiley & Sons, 1979.
    【24】C.Campbell, Academic Press, INC, 1989.
    【25】R. P. Howson, N. Danson, G. W. Hall, Elseviser, Nuclear Instruments and Methods in Physics Research B, 1997.
    【26】David M. Pozar, “Microwave Engineering”, pp.230-231, 1990.
    【27】卓聖鵬, “高頻與微波量測”, 全華科技圖書, 2000.
    【28】Marten Seth, “利用寬頻網路分析儀技術測試CDMA元件”, 電子工程專輯, 2003.
    【29】Campbell, Colin K., Surface acoustic wave devices for mobile and wireless communications, 1998.
    【30】David M. Pozar, Microwave Engineering, Wiley, 1998.
    【31】ANSOFT SERENADE® 8.71 使用技術手冊
    【32】Hank Wohltjen,“Mechanism of operation and design considerations for surface acoustic wave device vapour sensors”, Sensors and Act-uator, 5, pp.307-325, 1984.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE