簡易檢索 / 詳目顯示

研究生: 林誌宏
Chih-Hong Lin
論文名稱: 表面電漿子共振效應應用於染料敏化太陽能電池電極之研究
The Surface Plasmon Resonance Effect Applied in Studying the Electrode of Dye-Sensitized Solar Cells
指導教授: 林樹均
Su-Jien Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 175
中文關鍵詞: 表面電漿子共振效應染料敏化太陽能電池吸收係數
外文關鍵詞: Surface Plasmon Resonance Effect, Dye-Sensitized Solar Cells, Absorption Coefficient
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   染料敏化太陽能電池具有可撓性、製程簡易、材料成本低廉等優點,但光電轉換效率仍低於11 %。本研究期望利用表面電漿子共振效應來提升吸光之染料分子吸收係數,以增加其光電轉換效率。
      本研究以射頻磁控濺鍍法在玻璃與FTO基板上製備銀薄膜與金薄膜,並做真空退火以得到銀與金之奈米粒子,探討銀與金所引發之表面電漿子共振效應;再將染料分子滴覆其上,探討銀與金對於染料分子吸收係數之影響。結果顯示:表面電漿子共振效應之特性吸收峰與特性散射峰之波長位置,隨著奈米粒子粒徑增加,發現會往長波長位移;其吸收強度與散射強度,銀皆高於金。銀與金所引發之表面電漿子共振效應對於染料分子吸收係數的確具有增強之效果,且銀的效果優於金。在玻璃基板上,最佳效果為1.43倍(銀奈米粒子平均粒徑為83 nm);而在FTO基板上,最佳效果為2.97倍(銀膜厚為3 nm時,微結構呈現多邊形之奈米粒子與島狀分布)。金在FTO基板上,最佳效果為2.04倍(金奈米粒子平均粒徑為55 nm)。
      本研究對於染料敏化太陽能電池電極中所使用之染料分子,利用表面電漿子共振效應,提供一個提升其吸收係數之方法,對於光電轉換效率之改善,相信極具潛力。


    摘要 誌謝辭 目錄 圖目錄 表目錄 第一章 緒論 1-1 前言 1-2 研究動機與目的 第二章 文獻回顧 2-1 表面電漿子 2-2 粒子電漿子 2-3 染料敏化太陽能電池 第三章 實驗方法與步驟 3-1 材料準備 3-2 實驗設備 3-3 實驗流程 3-4 分析與量測 第四章 結果與討論 4-1 FTO導電玻璃電性之探討 4-2 銀薄膜與銀奈米粒子的表面電漿子共振效應之探討 4-2-1 銀薄膜與銀奈米粒子的表面形貌觀察與結構分析 4-2-2 銀薄膜與銀奈米粒子的散射光譜與吸收光譜分析 4-3 銀薄膜與銀奈米粒子的表面電漿子共振效應對於染料分子吸收係數影響之探討 4-4 金薄膜與金奈米粒子的表面電漿子共振效應之探討 4-4-1 金薄膜與金奈米粒子的表面形貌觀察與結構分析 4-4-2 金薄膜與金奈米粒子的散射光譜與吸收光譜分析 4-5 金薄膜與金奈米粒子的表面電漿子共振效應對於染料分子吸收係數影響之探討 第五章 結論 第六章 參考文獻

    1. 蕭立君,抗反射膜對Ⅲ-Ⅴ族太陽電池量子效率之影響,碩士論
    文,私立中原大學,中華民國台灣 (2004).

    2. M. Ihara, K. Tanaka, K. Sakaki, I. Honma, and K.Yamada,
    “Enhancement of the Absorption Coefficient of cis-(NCS)
    2 Bis(2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(II)
    Dye in Dye-sensitized Solar Cells by a Silver Island
    Film”, J. Phys. Chem. B, 101, 5153 (1997).

    3. C. Wen, K. Ishikawa, M. Kishima, K. Yamada, “Effects of
    Silver Particles on the Photovoltaic Properties of Dye-
    sensitized TiO2 Thin Films”, Solar Energy Materials &
    Solar Cells, 61, 339 (2000).

    4. K. Ishikawa, C. J. Wen, K. Yamada, and T. Okubo, “The
    Photocurrent of Dye-sensitized Solar Cells Enhanced by
    the Surface Plasmon Resonance”, Journal of Chemical
    Engineering of Japan, 37, 645 (2004).

    5. 林明為、廖駿偉、王俊凱,“電漿子與奈米結構”,台灣奈米科
    技 (2003).

    6. 王俊凱,“奈米結構的電磁共振現象”,工業材料雜誌,190,
    124 (2002).

    7. R. H. Ritchie, Phys. Rev., 106, 874 (1957).

    8. C. J. Powell and J. B. Swan, “Effect of Oxidation on the
    Characteristics Loss Sepectra of Aluminum and
    Magnesium”, Phys. Rev., 118, 640 (1960).

    9. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface
    Plasmon Subwavelength Optics”, Nature, 424, 824 (2003).

    10. H. Raether, Surface Plasmons on Smooth and Rough
    Surfaces and on Gratings, Springer-Verlag, Berlin,
    Heidelberg, New York, London, Paris, Tokyo (1988).

    11. 林俊佑,表面電漿子與粒子電漿子強化之光電生物感測器,碩士
    論文,國立中央大學,中華民國台灣 (2004).

    12. F. Mafune, J. Y. Kohno, Y. Takeda, and T. Kondow,
    “Structure and Stability of Silver Nanoparticles in
    Aqueous Solution Produced by Laser Ablation”, J. Phys.
    Chem., 104, 9111 (2000).

    13. G. Mie, Ann. Phys. (N. Y.), 25, 377 (1908).

    14. K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith,
    and S. Schultz, “Interparticle Coupling Effect on
    Plasmon Resonances of Nanogold Particles”, Nano
    Letter, 3, 1087 (2003).

    15. M. Gr□tzel, “Review Dye-Sensitized Solar Cells”,
    Journal of Photochemistry and Photobiology C:
    Photochemistry Reviews, 4, 145 (2003).

    16. W. West, Proc. Vogel Centennial Symp., Photogr. Sci.
    Eng., 18, 35 (1874).

    17. M. P. Dare-Edwards, J. B. Goodenough, A. Hamnet, K. R.
    Seddon, and R. D. Wright, Faraday Disc., Chem. Soc.,
    70, 285 (1980).

    18. 姚品全,奈米材料與奈米結構,私立大葉大學,中華民國台灣
    (2005).

    19. G. M. Bryant, J. E. Fergusson, and H. K. J. Powell,
    Aust. J. Chem., 24, 257 (1971).

    20. M. Gr□tzel, “Photoelectrochemical Cells”, Nature,
    414, 338 (2001).

    21. J. Fang, L. Su, J. Wu, Y. Shen, and Z. Lu, New J.
    Chem., 270, 145 (1997).

    22. 尤如瑾,“世界太陽光電產業現況與展望”,機械工業技術與市
    場資訊專輯,263,156 (2005).

    23. 鄭耿豪,利用射頻磁控濺鍍法製備高熵合金氮化物硬質薄膜,碩
    士論文,國立清華大學,中華民國台灣 (2005).

    24. Skoog, Principle of Instrumental Analysis, 5th ed.,
    Harcourt Brace Jovanovich College.

    25. M. Gr□tzel, “Perspectives for Dye-sensitized
    Nanocrystalline Solar Cells”, Prog. Photovolt. Res.
    Appl., 8, 171 (2000).

    26. M. Gr□tzel, “Mesoporous Oxide Junctions and
    Nanostructured Solar Cells”, Current Opinion in
    Colloid and Interface Science, 4, 314 (1999).

    27. M. Westphalen, U. Kreibig, J. Rostalski, H. Lukth, and
    D. Meissner, “Metal Cluster Enhanced Organic Solar
    Cells”, Solar Energy Materials and Solar Cells, 61, 97
    (2000).

    28. K. Katoa, H. Tsurutaa, T. Ebea, K. Shinboa, F. Kanekoa,
    and T. Wakamatsub, “Enhancement of Optical Absorption
    and Photocurrents in Solar Cells of Merocyanine
    Langmuir–Blodgett Films Utilizing Surface Plasmon
    Excitations”, Materials Science and Engineering C, 22,
    251 (2002).

    29. R. D. McConnell, “Assessment of the Dye-sensitized
    Solar Cell”, Renewable and Sustainable Energy Reviews,
    6, 273 (2002).

    30. S. Shanthi, C. Subramanian, and P. Ramasamy,
    “Preparation and Properties of Sprayed Undoped and
    Fluorine Doped Tin Oxide Films”, Materials Science and
    Engineering, B57, 127 (1999).

    31. K. M. Torosian, A. S. Karakashian, and Y. Y. Teng,
    “Surface Plasma-enhanced Internal Photoemission in
    Gallium Arsenide Schottky Diodes”, Applied Optics, 26,
    2650 (1987).

    32. G. Zhao, H. Kozuka, and T. Yoko, “Sol-gel Preparation
    and Photoelectrochemical Properties of TiO2 Films
    Containing Au and Ag Metal Particles”, Thin Solid
    Films, 277, 147 (1996).

    33. G. Zhao, H. Kozuka, and T. Yoko, “Effect of the
    Incorporation of Silver and Gold Nanoparticles on the
    Photoanodic Properties of Rose Bengal Sensitized TiO2
    Electrodes Perpared by Sol-gel Method”, Solar Energy
    Materials and Solar Cells, 46, 219 (1997).

    34. 蔡進譯,“超高效率太陽電池-從愛因斯坦的光電效應談起”,
    物理雙月刊,27,701 (2005).

    35. P. Orfanides, T. F. Buckner, M. C. Buncick, F.
    Meriaudeau, and T. L. Ferrell, “Demonstration of
    Surface Plasmons in Metal Island Films and the Effect
    of the Surrounding Medium - An undergraduate
    experiment”, Am. J. Phys., 68, 936 (2000).

    36. 林佑松,利用全反射衰減法研究液晶分子表面傾角,碩士論文,
    國立中山大學,中華民國台灣 (2003).

    37. 陳子江、蘇文寬、林瑤冷,“奈米銀粒子溶液激發表面電漿波特
    性之研究”,中正嶺學報,33,1 (2004).

    38. S. J. Chen, F. C. Chien, G. Y. Lin, and K. C. Lee,
    “Enhancement of the Resolution of Surface Plasmon
    Resonance Biosensors by Control of the Size and
    Distribution of Nanoparticles”, Optics Letters, 29,
    1390 (2004).

    39. W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X.
    Zhang, “Plasmonic Nanolithography”, Nano Letters, 4,
    1085 (2004).

    40. J. R. Krenn, M. Salerno, N. Felidj, B. Lamprecht, G.
    Schider, A. Leitner, F. R. Aussenegg, J. C. Weeber, A.
    Dereux and J. P. Goudonnet, “Light Field Propagation
    by Metal Micro- and Nanostructures”, Journal of
    Microscopy, 202, 122 (2001).

    41. M. Salerno, N. Fe´lidj, J. R. Krenn, A. Leitner, and
    F. R. Aussenegg, and J. C. Weeber, “Near-Field Optical
    Response of a Two-dimensional Grating of Gold
    Nanoparticles”, Physical Review B, 63, 165422 (2001).

    42. J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider,
    M. Salerno, A. Leitner, and F. R. Aussenegg, “Non–
    Diffraction-Limited Light Transport by Gold
    Nanowires”, Europhys. Lett., 60, 663 (2002).

    43. Mostafaa. el-sayed, “Some Interesting Properties of
    Metals Confined in Time and Nanometer Space of
    Different Shapes”, Accounts of Chemical Research, 34,
    257 (2001).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE