簡易檢索 / 詳目顯示

研究生: 劉軒良
Liu, Hsuan-Liang
論文名稱: 冷凍解凍法強迫二氧化矽漿料凝聚的應用研究
Study on Use on The Freeze/Thaw Procedure to the Aggregation of Silica Slurry
指導教授: 周更生
Chou, Kan-Sen
口試委員: 段興宇
汪上曉
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 78
中文關鍵詞: 漿料分散二氧化矽冷凍-解凍聚集
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要為探討冷凍解凍(Freeze/Thaw)程序強迫二氧化矽漿料聚集的應用價值,吾人討論此法與傳統的量測漿料穩定性的方法比較,並探討pH和高分子保護劑聚乙烯吡咯烷酮(Polyvinylpyrrolidone, PVP)對二氧化矽聚集的影響。
    實驗結果發現,若干二氧化矽漿料會於冷凍解凍後凝聚,使用雷射粒徑儀量測其直徑至少有二十倍的增加。除了肉眼可見漿料從透明轉成乳白色會沉澱的漿料,光學顯微鏡與電子顯微鏡也可看到聚集顆粒在漿料中產生。電子顯微鏡可看到聚集體多數呈圓形,推想這是從四面八方均勻受力擠壓的結果,因為在冷凍過程中,冰晶成長排擠二氧化矽顆粒,強制顆粒互相靠近而發生聚集。
    二氧化矽漿料在高pH值和高PVP含量能抵抗因為冷凍解凍引發的聚集效果,pH=6時至少需添加0.075 (g/g Silica)的PVP能完全抵抗凝聚,隨著pH值增加,可以添加較少PVP就能抵抗凝聚,當pH=10時,僅需0.025就可以完全抵抗凝聚。然而在pH<4時,加入PVP反而會直接導致凝聚,不需要經過冷凍解凍程序。冷凍解凍所得的聚集體形狀是緊密的球形,但加入PVP而直接凝聚的聚集體結構鬆散不規則,因此猜測是PVP成二氧化矽之間的架橋,而導致凝聚。
    二氧化矽與PVP的吸附平衡也被建立,初期結果發現有多層吸附現象,熱重分析(TGA)中有些仍維持原來的燃燒溫度(450℃),而有些PVP燃燒溫度因為吸附而改變(350℃)。PVP以氫鍵吸附的強度必定大於外圍PVP的吸附強度,因此以水清洗多餘的PVP即可得到單層吸附曲線。
    另外研究冷凍解凍法應用於造粒,溶膠的二氧化矽冷凍解凍造粒後震實密度(tap density) 比冷凍乾燥法大上五倍。燃燒法製造的粉末(fumed silica)經過冷凍造粒後,震實密度也提高至五倍。造粒成功的粉末在壓錠成型後並以高溫燒結,兩種樣品經可達一定的透明度,然而燒結效果除與堆積有關外,基本粒子的大小也有密切的關係,不過經由冷凍解凍程序強迫奈米粒子聚集成為自由流動的micron等級之粒子確為可行的簡易替代方法。


    一、 緒論 1 1.1. 目的 1 1.2. CMP簡介 2 二、 原理 7 2.1. 漿料分散理論 7 2.2. 雷射動態粒徑儀理論 11 2.3. 沉降理論 12 Stokes定律(自由沉降free settling) 12 Richardson & Zakitokes經驗式(受阻沈降hindered settling) 12 2.4. 平衡吸附理論 14 Langmuir恆溫吸附理論 14 2.5. 燒結機制理論 14 燒結程序與燒結現象 14 燒結現象的質傳機制 15 緻密化(Densification) 16 晶格擴散(Lattice Diffusion) 17 尺度定律 (Scaling Law) 12 三、 文獻回顧 20 3.1. Large Particle Count(LPC)與刮痕的關係 20 3.2. 機械力對凝聚形為的影響 20 3.3. 冷凍-解凍法(Freeze/Thaw) 21 金奈米顆粒/金奈米棒以F/T聚集 21 二氧化矽奈米顆粒以F/T聚集 22 冷凍解凍程序的參考文獻 24 3.4. 曾經使用過的分散方法與鑑定方法 26 Fumed Silica Slurry加入PVP作為分散劑 26 使用混和的介面活性劑穩定高離子強度的漿料 30 顆粒以界面活性劑表面改質對CMP的影響 32 利用吸收光度計對CeO2-coated SiO2評估穩定性 32 吸附非離子型界面活性劑的膠態之二氧化矽形貌 33 曾經用於使漿料分散的介面活性劑與分散劑 33 3.5. 造粒方法 34 噴霧乾燥法 34 擠壓造粒法 35 3.6. 二氧化矽燒結 35 3.7. 文獻總結與動機 35 四、 實驗方法 36 4.1. 藥品與儀器 36 4.1.1. 藥品 36 超純水 36 燃燒法製造的二氧化矽粉末(FS) 36 矽酸鈉製造的二氧化矽漿料(BCS) 36 TEOS製造的二氧化矽漿料(TCS) 36 氫氧化鉀 36 硝酸 36 十二烷基硫酸鈉(SDS) 37 聚乙烯吡咯烷酮(PVP) 37 液態氮 37 4.1.2. 儀器與設備 38 高解析度場發射掃描式電子顯微鏡 38 高解析度穿透式顯微鏡 38 雷射動態粒徑儀 38 紫外光-可見光光譜儀 39 光學顯微鏡 40 pH電極 40 冷凍乾燥機 40 高速離心機 40 試管震盪器 40 錐板式黏度計 41 熱重分析儀 41 冷凍-解凍專用冷凍設備 42 震實密度設備 42 4.2. 沉降法鑑定二氧化矽漿料抵抗凝聚的能力 43 4.3. 機械法鑑定二氧化矽漿料抵抗凝聚的能力 44 4.4. 冷凍解凍法(Freeze/Thaw)鑑定漿料抵抗凝聚的能力 45 4.5. PVP-Silica吸附平衡線的建立 46 4.6. 造粒與燒結 47 五、 結果與討論 48 5.1. 沉降法鑑定 48 二氧化矽漿料(FS)-沉降速度測量-比較不同pH的影響 48 二氧化矽漿料(BCS)-沉降速度測量-比較不同pH的影響 50 沉降法鑑定小結 50 5.2. 機械法鑑定 51 二氧化矽漿料(BCS)施加剪變後的動態黏度及過程後之粒徑變化 51 5.3. 冷凍解凍法(F/T)鑑定 52 冷凍法使二氧化矽漿料(TCS)聚集的效果 52 5.4. 分散劑對漿料改質成效 54 二氧化矽漿料(TCS)加入不同分散劑並以冷凍-解凍法評估 54 二氧化矽漿料(TCS)調整pH與加入PVP分散劑以冷凍-解凍法評估 57 總結PVP-40k加於不同pH值的二氧化矽漿料後,抵抗凝聚的能力 58 5.5. PVP對二氧化矽的吸附平衡 64 二氧化矽漿料(TCS,1wt%,pH=7)吸附PVP之能力-平衡吸附曲線 64 5.6. 二氧化矽使用冷凍-解凍造粒與燒結 68 二氧化矽造粒 68 二氧化矽燒結(550℃) 70 二氧化矽燒結(1200℃) 71 六、 結論與建議 74 6.1. 抵抗凝聚鑑定法小結 74 6.2. PVP分散劑的效果 74 6.3. 造粒的效果 74 七、 參考資料 75

    Berne, B.J., R. Pecora, Dynamic Light Scattering. Courier Dover Publications, U.S.A. (2000)
    Chang F. C., S. Tanawade and R. K. Singh, "Effects of Stress-Induced Particle Agglomeration on Defectivity during CMP of Low-k Dielectrics", Journal of the Electrochemical Society, 156, H39, (2009)
    Chang F. C., P. Kumar, R. Singh, K. Balasundaram, J. Lee, J. Lee and R. K. Singh, "Role of interparticle forces during stress-induced agglomeration of CMP slurries", Colloids and Surfaces a-Physicochemical and Engineering Aspects, 389, 33, (2011)
    Christian P., F. Von der Kammer, M. Baalousha and T. Hofmann, "Nanoparticles: structure, properties, preparation and behaviour in environmental media", Ecotoxicology, 17, 326, (2008)
    Dhenge R. M., K. Washino, J. J. Cartwright, M. J. Hounslow and A. D. Salman, "Twin screw granulation using conveying screws: Effects of viscosity of granulation liquids and flow of powders", Powder Technology, 238, 77, (2013)
    Despert G. and J. Oberdisse, "Formation of micelle-decorated colloidal silica by adsorption of nonionic surfactant", Langmuir, 19, 7604, (2003)
    Lan Y. Q. and Y. Z. Li, "Effect of pump-induced particle agglomeration on CMP", Solid State Technology, 51, 40, (2008)
    Kim H. J., J. K. Choi, M. K. Hong, K. Lee and Y. Ko, "Contact Behavior and Chemical Mechanical Polishing (CMP) Performance of Hole-Type Polishing Pad", ECS Journal of Solid State Science and Technology, 1, P204, (2012)
    Kim J., U. Paik, Y. G. Jung, T. Katoh and J. G. Park, "The stability of nano fumed silica particles and its influence on chemical mechanical planarization for interlayer dielectrics", Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 41, 4509, (2002)
    Overbeek, J. T. G. "Recent Developments in Understanding of Colloid Stability." Journal of Colloid and Interface Science, 58, 408, (1977)
    Oliver, M. R. "Chemical-Mechanical Planarization of Semiconductor Materials" Springer, U.S.A. (2004)
    Palla B. J. and D. O. Shah, "Stabilization of high ionic strength slurries using surfactant mixtures: Molecular factors that determine optimal stability", Journal of Colloid and Interface Science, 256, 143, (2002)
    Peethala B. C., D. Roy and S. V. Babu, "Controlling the Galvanic Corrosion of Copper during Chemical Mechanical Planarization of Ruthenium Barrier Films", Electrochemical and Solid State Letters, 14, H306, (2011)
    Reed J. S. "Principles of Ceramics Processing" John Wiley & Sons, Incorporated, U.S.A. (2000)
    Remsen E. E., S. Anjur, D. Boldridge, M. Kamiti, S. T. Li, T. Johns, C. Dowell, J. Kasthurirangan and P. Feeney, "Analysis of large particle count in fumed silica slurries and its correlation with scratch defects generated by CMP", Journal of the Electrochemical Society, 153, G453, (2006)
    Richardson J. F. and W. N. Zaki, "Sedimentation and fluidisation: part 1", Chemical Engineering Research & Design, 75, S82, (1997)
    Shaw, D. J. "Introduction to Colloid & Surface Chemistry" 4th ed, Butterworth-Heinemann, U.S.A. (1992)
    Song X. L., N. Jiang, Y. K. Li, D. Y. Xu and G. Z. Qiu, "Synthesis of CeO2-coated SiO2 nanoparticle and dispersion stability of its suspension", Materials Chemistry and Physics, 110, 128, (2008)
    Suzuki H., M. Murou, H. Kitano, K. Ohno and Y. Saruwatari, "Silica particles coated with zwitterionic polymer brush: Formation of colloidal crystals and anti-biofouling properties in aqueous medium", Colloids and Surfaces B-Biointerfaces, 84, 111, (2011)
    Tseng T. Y. and J. J. Yu, "Various Atmosphere Effects on Sintering of Compacts of Sio2 Microspheres", Journal of Materials Science, 21, 3615, (1986)
    Tomkins M. R., T. E. Baldock and P. Nielsen, "Hindered settling of sand grains", Sedimentology, 52, 1425, (2005)
    Toki M., T. Y. Chow, T. Ohnaka, H. Samura and T. Saegusa, "Structure of Poly(Vinylpyrrolidone)-Silica Hybrid", Polymer Bulletin, 29, 653, (1992)
    Xiao, H. "Introduction to Semiconductor Manufacturing Technology" Prentice Hall, U.S.A. (2000)
    Zhang L., P. Li, D. Li, S. Guo and E. Wang, "Effect of freeze-thawing on lipid bilayer-protected gold nanoparticles", Langmuir, 24, 3407, (2008)
    ITRS, Technology Working Group Reports:Front End Processes, ITRS, U.S.A. (2011)
    林明智 "化學機械研磨的微觀機制探討" 中央大學論文,台灣 (2000)
    高濂 "奈米粉體的分散與表面改性" 五南圖書出版,台灣 (2005)
    高振裕 "軟性電子之印刷式奈米材料與元件研究" 清華大學論文,台灣 (2010)
    李政麟 "化學機械研磨用奈米級二氧化鈰粉體之合成" 逢甲大學論文,台灣 (2002)
    吳宗哲 "透明的中孔二氧化矽塊材" 國立中央大學化學工程與材料工程研究所碩士論文,台灣 (2007)
    吳聖威 "奈米級二氧化矽SiO2粒子之燒結" 國立清華大學化學工程學系論文,台灣 (2001)
    國研院儀器科技研究中心 "奈米檢測技術" 財團法人國家實驗研究院儀器科技研究中心,台灣 (2009)
    王建榮,林必窕 "半導體平坦化CMP技術" 全華圖書,台灣 (2000)
    林宗賢 "噴霧乾燥法製作六種水分散性粒劑劑型配方之研發" 朝陽科技大學應用化學系論文,台灣 (2004)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE