簡易檢索 / 詳目顯示

研究生: 鄭富元
Cheng, Fu-Yuan
論文名稱: Gustatory Circuits in the Drosophila Brain
果蠅腦內味覺神經網路圖譜
指導教授: 江安世
Chiang, Ann-Shyn
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物科技研究所
Biotechnology
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 34
中文關鍵詞: 果蠅味覺神經
外文關鍵詞: drosophila, gustatory, SOG
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 動物都依賴味覺神經系統來攝取營養的食物以及逃避有毒的物質。然而,味覺神經的網路圖譜瞭解仍然非常貧乏。在這份研究報告裡,我們首先瞭解所有已經發表過的味覺受器在腦中的軸突分佈,在進一步的去分析這些軸突分佈的關係。第二我們利用光子活化綠螢光蛋白(PA-GFP)的技術以及果蠅腦神經圖庫來找更多可能的味覺投射神經,我們也預測了可能控制喜好及討厭的腦區,第三我們研發了一個新的果蠅進食的行為實驗,來了解這些可能的味覺投射神經的功能,在一些初步檢測突變的果蠅株後,發現了幾株突變的果蠅是味覺缺陷。我們也同時對控制食慾的神經hugin以及dilp2分析,從型態分佈到釋放的神經傳導物質都做了徹底的瞭解。最後為了能夠徹底瞭解味覺的神經網路,未來的計畫我們將繼續大規模的檢測更多的突變果蠅株來找到更多參與味覺的神經網路,並利用我們進食的行為實驗來驗證這些味覺神經網路的功能。


    The gustatory system elicits innate behavior critical for directing animals to ingest nutritious substrate and avoid toxic compound. However, the neural circuits map for gustatory system is still not clear. In this study, Firstly, we analysis the axonal terminal distribution of different GRNs by mapping the expression patterns of the first level of gustatory circuit- gustatory receptors neurons (GRNs) reported from previous studies. Secondly, we trace the candidate gustatory projection neuron by PA-GFP and fly circuit database. We also predict the higher brain center that mediates certain gustatory behavior from neuron morphology. Thirdly, we developed the feeding behavior assay to survey the gustatory circuits in the Drosophila brain. In our preliminary forward genetic screening, found some gene trap lines are identified as a gustatory mutant. Finally, we also map and identify the neurotransmitter release from the gustatory modulatory circuit- hugin and dilp2 neurons. In future, we will screen the gustatory circuit large scale and verify the candidates of gustatory circuits in the secondary level by feeding behavior assay.

    謝誌----------------------------------------------------2 Abstract -----------------------------------------------4 中文摘要------------------------------------------------5 1.Introdution-------------------------------------------6 2.Materials and Methods --------------------------------9 3.Results----------------------------------------------12 4.Discussion-------------------------------------------18 5.Reference--------------------------------------------20 6.Figure ----------------------------------------------23 7.Figure legend ---------------------------------------30 8.Appendix---------------------------------------------33

    Bader, R., Colomb, J., Pankratz, B., Schrock, A., Stocker, R.F., and Pankratz, M.J. (2007). Genetic dissection of neural circuit anatomy underlying feeding behavior in Drosophila: distinct classes of hugin-expressing neurons. J Comp Neurol 502, 848-856.
    Basler, K., and Struhl, G. (1994). Compartment boundaries and the control of Drosophila limb pattern by hedgehog protein. Nature 368, 208-214.
    Clyne, P.J., Warr, C.G., and Carlson, J.R. (2000). Candidate taste receptors in Drosophila. Science 287, 1830-1834.
    Clyne, P.J., Warr, C.G., Freeman, M.R., Lessing, D., Kim, J., and Carlson, J.R. (1999). A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila. Neuron 22, 327-338.
    Dahanukar, A., Lei, Y.T., Kwon, J.Y., and Carlson, J.R. (2007). Two Gr genes underlie sugar reception in Drosophila. Neuron 56, 503-516.
    Dethier, V.G. (1976). The hungry fly : a physiological study of the behavior associated with feeding (Cambridge, Mass., Harvard University Press).
    Dunipace, L., Meister, S., McNealy, C., and Amrein, H. (2001). Spatially restricted expression of candidate taste receptors in the Drosophila gustatory system. Curr Biol 11, 822-835.
    Fischler, W., Kong, P., Marella, S., and Scott, K. (2007). The detection of carbonation by the Drosophila gustatory system. Nature 448, 1054-1057.
    Gordon, M.D., and Scott, K. (2009). Motor control in a Drosophila taste circuit. Neuron 61, 373-384.
    Jiao, Y., Moon, S.J., Wang, X., Ren, Q., and Montell, C. (2008). Gr64f is required in combination with other gustatory receptors for sugar detection in Drosophila. Curr Biol 18, 1797-1801.
    Kwon, J.Y., Dahanukar, A., Weiss, L.A., and Carlson, J.R. (2007). The molecular basis of CO2 reception in Drosophila. Proc Natl Acad Sci U S A 104, 3574-3578.
    Lee, T., and Luo, L. (1999). Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451-461.
    Lee, Y., Moon, S.J., and Montell, C. (2009). Multiple gustatory receptors required for the caffeine response in Drosophila. Proc Natl Acad Sci U S A 106, 4495-4500.
    Marella, S., Fischler, W., Kong, P., Asgarian, S., Rueckert, E., and Scott, K. (2006). Imaging taste responses in the fly brain reveals a functional map of taste category and behavior. Neuron 49, 285-295.
    Melcher, C., Bader, R., Walther, S., Simakov, O., and Pankratz, M.J. (2006). Neuromedin U and its putative Drosophila homolog hugin. PLoS Biol 4, e68.
    Melcher, C., and Pankratz, M.J. (2005). Candidate gustatory interneurons modulating feeding behavior in the Drosophila brain. PLoS Biol 3, e305.
    Miyamoto, T., and Amrein, H. (2008). Suppression of male courtship by a Drosophila pheromone receptor. Nat Neurosci 11, 874-876.
    Patterson, G.H., and Lippincott-Schwartz, J. (2002). A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297, 1873-1877.
    Poskanzer, K.E., Marek, K.W., Sweeney, S.T., and Davis, G.W. (2003). Synaptotagmin I is necessary for compensatory synaptic vesicle endocytosis in vivo. Nature 426, 559-563.
    Rajashekhar, K.P., and Singh, R.N. (1994). Neuroarchitecture of the tritocerebrum of Drosophila melanogaster. J Comp Neurol 349, 633-645.
    Robertson, H.M., Warr, C.G., and Carlson, J.R. (2003). Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster. Proc Natl Acad Sci U S A 100 Suppl 2, 14537-14542.
    Schwaerzel, M., Monastirioti, M., Scholz, H., Friggi-Grelin, F., Birman, S., and Heisenberg, M. (2003). Dopamine and octopamine differentiate between aversive and appetitive olfactory memories in Drosophila. J Neurosci 23, 10495-10502.
    Scott, K., Brady, R., Jr., Cravchik, A., Morozov, P., Rzhetsky, A., Zuker, C., and Axel, R. (2001). A chemosensory gene family encoding candidate gustatory and olfactory receptors in Drosophila. Cell 104, 661-673.
    Slone, J., Daniels, J., and Amrein, H. (2007). Sugar receptors in Drosophila. Curr Biol 17, 1809-1816.
    Stocker, R.F. (1994). The organization of the chemosensory system in Drosophila melanogaster: a review. Cell Tissue Res 275, 3-26.
    Stocker, R.F., and Schorderet, M. (1981). Cobalt filling of sensory projections from internal and external mouthparts in Drosophila. Cell Tissue Res 216, 513-523.
    Taylor, B.J. (1989). Sexually dimorphic neurons in the terminalia of Drosophila melanogaster: I. Development of sensory neurons in the genital disc during metamorphosis. J Neurogenet 5, 173-192.
    Vosshall, L.B., Amrein, H., Morozov, P.S., Rzhetsky, A., and Axel, R. (1999). A spatial map of olfactory receptor expression in the Drosophila antenna. Cell 96, 725-736.
    Wang, J., Zugates, C.T., Liang, I.H., Lee, C.H., and Lee, T. (2002). Drosophila Dscam is required for divergent segregation of sister branches and suppresses ectopic bifurcation of axons. Neuron 33, 559-571.
    Wang, Z., Singhvi, A., Kong, P., and Scott, K. (2004). Taste representations in the Drosophila brain. Cell 117, 981-991.
    Wu, Q., Zhang, Y., Xu, J., and Shen, P. (2005). Regulation of hunger-driven behaviors by neural ribosomal S6 kinase in Drosophila. Proc Natl Acad Sci U S A 102, 13289-13294.
    Yang, C.H., Belawat, P., Hafen, E., Jan, L.Y., and Jan, Y.N. (2008). Drosophila egg-laying site selection as a system to study simple decision-making processes. Science 319, 1679-1683.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE