簡易檢索 / 詳目顯示

研究生: 顏堯德
Yao-Te Yen
論文名稱: 1. 新穎磷光鉑二價錯合物含磷配位基-合成、結構及光物理性質探討 2. 新穎深藍磷光鉑四價錯合物
1. Novel Phosphorescent Platinum (II) Complexes Bearing Phosphine Ligands: Synthesis, Structures and Photophysical Properties 2. Novel Deep Blue Phosphorescent Platinum (IV) Complexes
指導教授: 陳秋炳
Cheu-Pyeng Cheng
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 244
中文關鍵詞: 有機電激發光鉑(II)金屬錯合物磷配位基
外文關鍵詞: OLED, Platinum (II) complexes, Phosphine ligand
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們合成出一系列新穎鉑二價帶有磷配位基的磷光金屬錯合物。磷配位基上的取代基會影響它們的固態放光波長,但對於HOMO和LUMO的能階差卻影響不大。P(Ph-F)3是一個具有極佳立體障礙的配位基,可以防止Pt-Pt interaction 和π-π interaction,以免造成放光光譜的紅位移。我們也利用密度泛函理論計算去探反應機構及不同陰離子對錯合物的放光影響。然而,根據DFT理論計算的結果,PtdfppyCNPPh3 具有很高的能階差,在有機發光二極體的領域中相當適合作為藍光磷光材料。我們努力嘗試合成PtdfppyCNPPh3 ,但卻失敗,幸運的是卻從中得到高亮度的聚集金屬錯合物。我們改變反應條件且利用自組裝反應去提高反應產率。所合成出的兩個聚集金屬錯合物具有獨特的平行四邊形結構,且以Pt-CN-Ag為單位,是文獻上第一個例子。另一方面,我們也利用氧化加成反應合成出鉑四價金屬錯合物。當鉑二價金屬錯合物氧化成四價後,MLCT能階會被誘導變大,而造成放光波長也會藍移許多,尤其是PtdfppyacacCH3CN,它的最短放光波長在437 nm,是文獻上眾多含有2,4-diflourophenyl pyridyl 配位基的金屬錯合物中最藍的放射波長。


    A series of novel phosphorescent platinum (II) complexes bearing phosphine ligands were synthesized. Photoluminescence of platinum (II) complexes in solid state are influenced by substituents on phosphine ligands, but the energy gap between HOMO and LUMO isn’t. Tri-(4-flourophenyl) phosphine has the best steric effect for preventing Pt-Pt interaction and π-π interaction to make red shift in photoluminescence. DFT-calculation was measured on several of platinum (II) complexes to discuss the reaction mechanism and the effect of different types of anions. According to DFT-calculation, PtdfppyCNPPh3 has the biggest energy gap between HOMO and LUMO, so I tried to synthesize PtdfppyCNPPh3 which can be a deep blue phosphorescent material in OLED. The synthesis of PtdfppyCNPPh3 was unsuccessful, but fortunately, aggregate complex with high luminescence was obtained. We changed reaction condition to promote the yield of aggregate complexes by self-assembly reaction. These two aggregate complexes have unique parellelogramal structure with Pt-CN-Ag unit, which was the first example of Pt-CN-Ag aggregate complex. In other hand, platinum (IV) complexes were synthesized by oxidative-addition process. While platinum (II) complexes were oxidized to platinum (IV) complexes, MLCT gap will be induced to larger. Hence, photoluminescence of platinum (IV) complexes are blue-shifted than that of platinum (II) complexes. Especially, for PtdfppyacacCH3CN, the complex can emit deep blue phosphorescence at 77 K with wavelength of 437 nm, 465 nm, 497nm in which 437 nm was the shortest wavelength of emission with 2,4-diflourophenyl pyridyl ligand.

    Contents 1. Novel Phosphorescent Platinum (II) Complexes Bearing Phosphine Ligands: Synthesis, Structures and Photophysical Properties I. Introduction..............................................................................................................1 1.1. Invention of electroluminescence device and it’s development………………….1 1.2. Host-guest energy transfer………………………………………………………..5 1.3. Fluorescence and phosphorescence………………………………………………7 1.4. Mechanism of Light Emission in OLED device………………………………....8 1.5. Properties of platinum (II) complexes……………………………………..…...10 1.6. Preface………………………………………………………………………….12 1.7. Experimental motivation.......................................................................................22 II. Synthesis and experimental steps (Part I)……………………………………..23 2.1. Chemical material.................................................................................................23 2.2. Instruments...........................................................................................................23 2.3. Synthetic steps......................................................................................................24 2.4. Formula of Pt (II) complexes……………………………………………….......38 III. Result and discussion (Part I) ………………………………………………...39 3.1. X-ray structure………………………………………………………………......39 3.2. Photophysical property……………………………………………………….....48 3.3. DFT-Calculation………………………………………………………………...55 IV. Conclusion (Part I)..............................................................................................68 V. Reference (Part I).........................................…………………………………….69 II. Synthesis and experimental steps (Part II)………………………………..…...72 2.1. Chemical material.................................................................................................72 2.2. Instruments...........................................................................................................72 2.3. Synthetic steps......................................................................................................73 2.4. Formula of Pt (II) complexes………………………………………………........78 III. Result and discussion (Part II)…..…………………………………………….79 3.1. X-ray structure………………………………………………………………......79 3.2. Photophysical property……………………………………………………….....83 3.3. Electrochemical properties………………………………………………………89 IV. Conclusion (Part II)…………………………………...………………………..90 V. Reference (Part II).................................................................................................91 2. Novel Deep Blue Phosphorescent Platinum (IV) Complexes I. Introduction………………………………………………………………………93 1.1. Development of platinum (IV) complexes……………………………………...93 1.2. Experimental motivation...…………………………………………………….96 II. Synthesis and experimental steps………………………………………………98 2.1. Chemical material.................................................................................................98 2.2. Instruments...........................................................................................................98 2.3. Synthetic steps......................................................................................................99 2.4. Formula of Pt (II) complexes………………………………………………......108 III. Result and discussion………………………………………………………….109 3.1. X-ray structure……………………………………………………………….....109 3.2. Photophysical property………………………………………………………....113 3.3. DFT-calculation……………………………………………………………...…123 IV. Conclusion……………………………………………………………………..126 V、Reference……………………………………………………………...……….127 Appendix 1. Crystal data…………………………..……………………...……………………129 2. Electrochemical data……………………………………..………………………183 3. Life time data…………………………………………………………………….184 4. Synthesis of Pd(PPh3)4…………………………………………………………...191 5. Estimate HOMO and LUMO…………………………………………………….192 6. 1H NMR and 13C NMR data….…………………………………………………..193 7. Theoretic calculation data..………………………………………………………227

    V、Reference (Part I)
    【1】Pope, M.;Kallmann, H.P.;Magnante. P. J. Chem. Phys. 1963, 38, 2042.
    【2】P. S. Vincett and W. A. Barlow. Thin Solid Flims. 982, 94. 171.
    【3】Tang, C.W. ;VanSlyke, S.A. J.Appl.Phys. 1987, 51, 913.
    【4】Tang, C.W. ;VanSlyke, S.A; Chen,C.H. J.Appl.Phys. 1989, 65, 3610.
    【5】M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, Nature. 1998, 395, 151.
    【6】C. Adachi, M. A.Baldo, S.R. Forrest, S. Lamansky, M. E. Thompson, R. C. kwong, Appl. Phys. Lett. 2001, 78, 1622
    【7】J. P. Duan, P. P. Sun, C. H. Cheng. Adv. Mater, 2003, 15, 224
    【8】S. J. Yeh, W. C. Wu, C. T. Chen, Y. H. Song, Y. Chi, M. H. Ho, S. F. Hsu, C. H. Chen. Adv. Mater, 2005, 17, 285
    【9】Laurent Chassot, E. Mueller, Alex Von Zelewsky. Inorg.Chem.1984, 23,4249
    【10】Laurent Chassot, Philippe Jolliet, Alex Von Zelewsky, Mauro Maestri, Diana Sandrini, Vincenzo Balzani, Chem. Phys.Lett.1985, 122,375
    【11】Laurent Chassot, Alex Von Zelewsky. Helvetica.Chimica Acta. 1986, 69,1855
    【12】Jakka Kavitha, Sheng-Yuan Chang, Yun Chi,Jen-Kan Yu, Ya-Hui Hu, Pi-Tai Chou, Shie-Ming Peng, Gene-Hsiang Lee, Yu-Tai Tao, Chin-Hsiung Chien, and Arthur J. Carty. Adv. Funct.Mater. 2005. 15, 223
    【13】X. Jiang, A. K.-Y. Jen, B.Carlson, L. R. Dalton. Appl. Phys. Lett, 2002, 80, 713
    【14】Chi-Kin Koo, Yu-Man Ho, Cheuk-Fai Chow, Michael Hon-Wah Lam, Tai-Chu Lau, and Wai-Yeung Wong. Inorg.Chem.2007, 46, 3603
    【15】M. Utsuno, T. Yutaka, M. Murata, M. Kurihara, N. Tamai, and
    H. Nishihara. Inorg.Chem.2007, 46, 11291
    【16】M. Kato, C. Kosuge, K. Morii, J. S. Ahn, H. Kitagawa, T. Mitani, M. Matsushita, T. Kato, S. Yano,and M. Kimura. Inorg. Chem. 1999, 38, 1638
    【17】K. A. Doris, D. E. Ellis, M. A. Ratner, and T. J. Marks. J. Am. Chem. Soc.1984.106.2491
    【18】(a) Lai, S. W. Che, C. M. Top. Curr Chem,2004, 241, 27. (b) L u, W. Chan, M. C. W. Zhu, N. Che, C. M. Li, C. Hui, Z. J. Am. Chem. Soc. 2004, 126, 7639.
    【19】(a) Houlding, V. H.; Miskowski, V. M. Coord. Chem. ReV. 1991, 111, decreased rapidly upon145. (b) Miskowski, V. M.; Houlding, V. H. Inorg. Chem. 1991, 30,4446
    【20】(a) James A. Bailey, Vincent M. Miskowski, Harry B. Gray. Inorg. Chem, 1993, 32(4), 369 (b)Ghedini, M. Pucci, D. Crispini, A. Barberio, G. Organometallics, 1999, 18(11), 2116
    【21】Sheng-Yuan Chang, Jakka Kavitha, Shih-Wen Li, Chan-Shou Hsu, Yun Chi, Yu-Shan Yeh, Pi-Tai Chou, Gene-Hsiang Lee, Arthur J. Carty, Yu-Tai Tao, and Chin-Hsiung Chien. Inorg.Chem.2006, 45, 137
    【22】Jason Brooks, Yelizaveta Babayan, Sergey Lamansky, Peter I. Djurovich, Irina Tsyba, Robert Bau, and Mark E. Thompson, Inorg.Chem.2002, 41, 3055
    【23】Alex S. Ionkin, William J. Marshall, and Ying Wang, Organometallics .2005, 24, 619
    【24】Alvaro Dı´ez, Juan Fornie´s, Ana Garcı´a, Elena Lalinde, and M. Teresa. Moreno, Inorg.Chem. 2005, 44, 2443
    【25】Wei Lu, Michael C. W. Chan, Kung-Kai Cheung, and Chi-Ming Che, Organometallics.2001, 20, 2477
    【26】Wei Lu, Bao-Xiu Mi, Michael C. W. Chan, Zheng Hui, Chi-Ming Che, Nianyong Zhu, and Shuit-Tong Lee, J.Am.Chem.Soc.2004, 126, 4958
    【27】Yong-Yue Lin, Siu-Chung Chan, Michael C. W. Chan,Yuan-Jun Hou, Nianyong Zhu,Chi-Ming Che, Yu Liu, and Yue Wang, Chem. Eur. J. 2003, 9, 1263
    【28】D. F. O’Brien, M. A. Baldo, M. E. Thompson, S. R. Forrest, Appl. Phys. Lett.1999, 74, 442
    【29】Raymond C. Kwong, Scott Sibley, Timur Dubovoy, Marc Baldo,Stephen R. Forrest, and Mark E. Thompson, Chem. Mater.1999, 11, 3709
    【30】Masamichi Ikai, Fumiaki Ishikawa, Naoki Aratani, Atsuhiro Osuka, Shigeki Kawabata,Takanori Kajioka, Hisato Takeuchi, Hisayoshi Fujikawa, and Yasunori Taga, Adv. Funct.Mater.2006, 16, 515
    【31】Paul T. Furuta, Lan Deng, Simona Garon, Mark E. Thompson, and Jean M. J. Fre´chet, J.Am.Chem.Soc.2004, 126, 15388
    【32】Ze He, Wai-Yeung Wong, Xiaoming Yu, Hoi-Sing Kwok, and Zhenyang Lin, Inorg.Chem.2006, 45, 10922
    【33】Evan L. Williams, Kirsi Haavisto, Jian Li, and Ghassan E. Jabbour, Advt .Mater, 2007, 19, 197
    【34】Cockburn, B. N. Howe, D. V. Keating, T. Johnson, B. F. G.; Lewis,J. J. Chem. Soc., Dalton Trans. 1973, 404
    【35】Vicente, J. Abad, J.-A. Martinez-Viviente, E. Jones, P. G. Organometallics, 2002, 21, 4454
    【36】Vicente, J. Arcas, J. A. Farkland A. D. Ramírez de Arellano, M. C. Chem.-Eur. J. 1999, 5, 3066
    【37】Pearson, R. G. Inorg. Chem. 1937, 2,163
    【38】Chuluo Yang, Xiaowei Zhang, Han You, Lingyun Zhu, Lianqing Chen, Linna Zhu, Youtian Tao, Dongge Ma, Zhigang Shuai, and Jingui Qin, Adv. Funct . Mater.2007, 17, 651
    【39】Hay, P. J. J. Phys. Chem. A 2002, 106, 1634.

    V、Reference (Part II)
    【1】、(a) B. Hirani,; J, Li,; Peter, I,; Djurovich,; M, Yousufuddin,; J, Oxgaard,; P, Persson,; Scott, R. W,; R, Bau,; William, A. Goddard III,; M. E, Tompson, Inorg. Chem. 2007, 46, 3865-3875. (b) Dedeian, K. Jianmin,; S. Eric F,; D. C, Morton. Inorg. Chem. 2007, 46, 1603-1611. (c) A, B, Tamayo,; B, D, Aleyne,; P, I, Djurovich,; S, Lamansky,; I, Tsyba,; N, N, Ho,; R, Bau,; M, E, Thompson. J. Am. Chem. Soc. 2003, 125, 7377-7387.(d) J, Brooks.;Y, Babayan.; S, Lamansky.; P, I, Djurovich.; I, Tsyba.; R, Bau.; M, E, Thompson. Inorg. Chem. 2002, 41, 3055-3066.
    【2】、(a) D, N, Corrado; N, Jean; Effendy; P, Claudio; S, Brian W.; W, Allan H. Inorg Chimica Acta. 2007, 360(9), 2935-2943.(b) Miller, Alexander J. M.; Dempsey, Jillian L.; Peters, Jonas C. Inorganic Chemistry. 2007, 46(18), 7244 –7246. (c) Teo, Peili; Koh, Lip Lin; Hor, T. S. Andy. Chem. Comm. 2007, 41, 4221-4223. (d) Cotton, F. A.; Falvello, L. R.; Uson, R.; Fornies, J.; Tomas, M.; Casas, J. M.; Ara, I. Inorg. Chem. 1987, 26(9), 1366-1370.
    【3】、M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest,Nature, 1998, 395, 151.
    【4】、 Yang, Q. Z. Wu, L. Z. Wu, Z. X. Zhang, L. P. Tung, C. H. Inorg. Chem. 2002, 41, 5653.
    【5】、(a) C. H. Yang, S. W. Li, Y. Chi, Y. M. Cheng, Y. S. Yeh, P. T. Chou, G. H. Lee, C. H. W, C. F. Shu. Inorg. Chem. 2005, 44,7770 (b) S. Y. Chang, J. L. Chen, Y. Chi, Y. M. Cheng, G. H. Lee, C. M. Jiang, P. T. Chou. Inorg. Chem. 2007,46, 11202 (c) C. H. Yang, Y. M. Cheng, Y. Chi, C. J. Hsu, F. C. Fang, K. T. Wong, P. T. Chou, C. H. Chang, M. H. Tsai, C. C. Wu. Angew. Chem. Int. Ed. 2007, 46, 2418 (d) J. Kavitha, S. Y. Chang, Y. Chi, J. K. Yu, Y. H. Hu, P. T. Chou, S. M. Peng, G. H. Lee, Y. T. Tao, C. H. Chien, A. J. Carty. Adv. Funct. Material. 2005, 15, 223.
    【6】、L. Chassot, A. von Zelewsky, D. Sandrini, M. Maestri, and V. Balzani. J. Am. Chem. Soc. 1986, 108, 6084.
    【7】、(a) Chi-Kin Koo, Yu-Man Ho, Cheuk-Fai Chow, Michael Hon-Wah Lam, Tai-Chu Lau, and Wai-Yeung Wong. Inorg.Chem. 2007, 46, 3603 (b) Yong-Yue Lin, Siu-Chung Chan, Michael C. W. Chan,Yuan-Jun Hou, Nianyong Zhu,Chi-Ming Che, Yu Liu, and Yue Wang. Chem. Eur. J. 2003, 9, 1263 (c) Chi-Kin Koo, Yu-Man Ho, Cheuk-Fai Chow, Michael Hon-Wah Lam, Tai-Chu Lau, and Wai-Yeung Wong. Inorg.Chem.2007, 46, 3603

    V、Reference
    【1】 Ford, P. C. Wink, D. DiBenedetto, J. Prog. Inorg. Cfiem. 1983, 30, 213 and references therein.
    【2】 (a) Rich, R. L.; Taube, H. J. Am. chem. Soc. 1954, 76, 2604. (b) Balashev, K. P. Blinov, 1. I. Shagisultanova, G.A. Sou. J. Coord. Chem. 1987, 13, 938. (c)
    Vinogradov, S. A. Balashev, K. P. Shagisultanova, G. A. Sou. J. Coord. Chem. 1988, 14. 280.
    【3】(a) Goursot, A. Kirk, A. D. Waltz, W. L. Porter, G. A. Sharma, D. K. Inorg. Chem. 1987, 26, 14. (b) Fadnis, A. G. Kemp, T. J. J. Chem.Soc. Dalton Trans. 1989, 1237. (c) Shul'pin, G. A. Lederer, P. Nizova, G. A. Serdobov, M. A. Zh. Obshcfi. Kfiim. 1986, 56, 2616.
    【4】(a) Douglas, I. N. Nicholas, J. V. Wyborne, B. G. J. Cfiem. Pfiys. 1968, 48, 1415 (b) Rossiello, L. A. J. Cfiem. Phys. 1969, 51, 5191. (c) Patterson, H. H. Deberry, W. J. Byrne, J. E. Lomenze, J. A. Inorg. Cfiem. 1977, 16, 1698.
    【5】M. Gianini, A. Forster, P. Haag, A. V. Zelewsky, and Helen Stoeckli-Evans. Inorg. Chem. 1996, 35, 4889.
    【6】M. Ghedini, D. Pucci, A. Crispini, and G. Barberio. Organometallics, 1999, 18, 2116.
    【7】D. Kim, D. Holten, M. Gouteman, and J. W. Buchlerl. J. Am. Chem. Soc. 1984, 106, 4015.
    【8】L. Chassot, A. von Zelewsky, D. Sandrini, M. Maestri, and V. Balzani. J. Am. Chem. Soc. 1986, 108, 6084.
    【9】Hill. R. H. PuddeDhatt. R. J. J. Am. Chem. Soc. 1985. 107. 1218.
    【10】Vogier, A. Kunkely, H. Inorg. Chem. 1982, 21, 1172.
    【11】Roundhill, D. M. J. Am. Chem. Soc. 1985, 107, 4354.
    【12】M. E. Thompson. U. S. Pattren. US2002 / 0182441 A1.
    【13】Y. P. Wang. National Tsing Hua University Master's thesis. 2005.
    【14】M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest,Nature, 1998, 395, 151.
    【15】Vogler, A, Kunkely, H. Comments Inorg. Chem. 1990, 9, 201.
    【16】(a) Yang, Q. Z. Wu, L. Z. Wu, Z. X. Zhang, L. P. Tung, C. H. Inorg. Chem. 2002, 41, 5653 (b) Yam, V. W. W. Tang, R. P. L. Wong, K. M. C. Cheung, K. K. Organometallics. 2001, 20, 4476.
    【18】M. Ghedini, D. Pucci, A. Crispini and G. Barberio. Organometallics. 1999, 18, 2116.
    【19】J. Brooks, Y. Babayan, S. Lamansky, P. I. Djurovich, I. Tsyba, R. Bau, and M. E. Thompson, Inorg.Chem.2002, 41, 3055.
    【20】(a) Stahl, S. S.; Labinger, J. A.; Bercaw, J. E. J. Am. Chem. Soc. 1996, 118,5961. (b) Hill, G. S.; Rendina, L. M.; Puddephatt, R. J. Organometallics. 1996, 15, 2845. (c) De Felice, V.; De Renzi, A.; Panunzi , A.; Tesauro, D. J. Organomet. Chem. 1995, 488, C13.
    【21】K. Dedeian, J. Shi, E. Forsythe, D. C. Morton. Iorg. Chem. 2007, 46, 1603.
    【22】Hay, P. J. J. Phys. Chem. A. 2002, 106, 1634.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE