研究生: |
何雋禹 Ho, Chun-Yu |
---|---|
論文名稱: |
利用超高解析電鏡分析單晶3C-碳化矽與SA-Tyrannohex全纖維碳化矽複合材料在高溫矽離子輻照下之缺陷 Ultra-high Resolution TEM Analysis of Defect in Si Ion-irradiated Single Crystal 3C-SiC and SA-Tyrannohex SiC Fiber-bonded Composite at High Temperatures |
指導教授: |
開執中
Kai, Ji-Jung |
口試委員: |
陳福榮
Chen, Fu-Rong 張立 Chang, Li |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 核子工程與科學研究所 Nuclear Engineering and Science |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 117 |
中文關鍵詞: | 碳化矽 、穿透式電子顯微鏡 、輻射損傷 |
外文關鍵詞: | SiC, TEM, Radiation damage |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
碳化矽基材陶瓷近二、三十年來被認為是具有潛力與吸引力的核能結構材料。核能結構材料需承受高溫、高應力、高輻射劑量。目前碳化矽/碳化矽複合材料被選定為新核能材料,應用於高溫氣冷式反應器、核融合反應器、和用以取代輕水式反應器部分合金材料。
本實驗之主要目的為利用高解析電子顯微鏡,分析單晶碳化矽與全纖維碳化矽複合材料在高溫輻照環境之下,所造成之缺陷的顯微結構變化。利用清華大學加速器館之高能離子加速器以7 MeV Si3+離子輻照單晶3C-碳化矽和二維SA-Tyrannohex全纖維碳化矽/碳化矽複合材料,用以模擬碳化矽材料在核能反應器中所受之高溫輻射效應。輻照損傷劑量定在5和20 dpa,爐心材料於高溫氣冷式反應器中,一年所受之劑量小於2 dpa。單晶碳化矽於1000、1200和1350℃下進行實驗,碳化矽複合材料則於1000和1350℃下進行實驗。並使用掃描穿透式電子顯微鏡分析。
單晶3C-碳化矽輻照實驗中,平面缺陷在1000℃/ 5 dpa即形成,缺陷密度隨著溫度上升而下降,缺陷大小則隨溫度上升而增大。利用高解析原子影像分析,可解析輻照溫度1000℃以上所產生之平面缺陷為外置型差排環與內置型差排環,並透過球面相差修正掃描穿透式電子顯微鏡所拍攝之環型明場像,成功解析出差排環疊差的原子結構。此外,在輻照後的單晶碳化矽並無發現空孔存在,推測為因內置型插排環(空缺差排環)的疊差能低、部分空缺擴散至表面逸散、或形成之空缺(di-vacancy or tri-vacancy)太小無法以TEM觀察。
SA-Tyrannohex全纖維碳化矽複合材料輻照實驗中,於碳化矽晶粒內觀察到差排環和空孔等缺陷。此複合材料能有效抑制空孔的成長與減低空孔數量,原因為晶粒大小為300 nm左右,密度高的晶界有助於吸收空缺原子;且不像其他碳化矽複合材料輻照後,空孔會傾向形成於晶粒較大的基材處。此外,碳化矽複合材料中的氧化鋁受高溫輻照後,會形成有優選方向且大尺寸的空孔,可能影響材料的機械性質。因此,二維SA-Tyrannohex全纖維碳化矽複合材料若應用於高溫反應器,除了碳化矽受輻照的影響外,氧化鋁在材料中的含量也須考慮。
Silicon carbides (SiC) are considered as one of the promising candidates for structural and core materials used in fusion reactor and high temperature gas-cooled reactor (HTGR) due to its high thermal stability, and good resistance to irradiation and chemical attack. Single crystal 3C-SiC with less intrinsic defects was used to precisely characterize the radiation-induced defects in 3C-SiC. In addition, there are limited discussions related to radiation effect of SA-Tyrannohex fiber-bonded composite at high temperatures. Therefore, in this study, single crystal 3C-SiC thin film and SA-Tyrannohex SiC fiber-bonded composite were irradiated at 1000℃ to 1350℃ with 7MeV Si3+ ion to simulate the neutron irradiation in reactors. The microstructure of the irradiated SiC was examined by using high resolution transmission electron microscope (HRTEM) and spherical aberration corrected scanning TEM (Cs-corrected STEM).
In irradiated single crystal 3C-SiC, high resolution images showed that the planar defects were extrinsic stacking faulted loop with changing atomic sequences and intrinsic stacking faulted loop, i.e. vacancy loop. The atomic configurations were confirmed by STEM annular bright field image. However, no void has been found in single crystal 3C-SiC due to formation of vacancy loops, vacancies releasing from surface, or too small to be visible (<1 nm).
In addition, dislocation loops, voids, and edge dislocations in SA-Tyrannohex SiC fiber-bonded composite after irradiation were investigated. This SiC composite are able to suppress void growth and lower the void density after high-temperature irradiation due to its small grain size (~300 nm). Besides, larger voids (with diameter 10-40 nm) formed in alumina with preferred orientation after irradiation perhaps resulting in degradation of strength of the SA-Tyrannohex SiC fiber-bonded composite.
[1] K.L. Murty, I. Charit, “Structural materials for Gen-IV nuclear reactors: Challenges and opportunities”, Journal of Nuclear Materials, 383, pp. 189-195, 2008
[2] W. Corwin, “U.S. GENERATION IV REACTOR INTEGRATED MATERIALS TECHNOLOGY PROGRAM”, NUCLEAR ENGINEERING AND TECHNOLOGY, 38, p.p. 591, 2006
[3] Next Generation Nuclear Plant Licensing Strategy, NGNP, Aug.2008.
[4] ORNL, PHYSOR 2012 Advanced Reactor Concepts Workshop, Knoxville TN, April 15 2012
[5] Next Generation Nuclear Plant Licensing Strategy, NGNP, Aug 2008
[6] FY 2007 Ten-Year Program Plan - Appendix 1.0 - NGNP , September 2007
[7] Y. Katoh, L. L. Snead, I. Szlufarska, W. J. Weber, “Radiation effects in SiC for nuclear structural applications”, Current Opinion in Solid State and Materials Science, 16, pp. 143–152, 2012
[8] S. J. Piet, HTGR Technology Family Assessment for a Range of Fuel Cycle Missions, INL technical report, August 2010
[9] 盧銀娟,楊宇,石俠民,球床模塊是高溫氣冷堆的研究及發展現狀,pp. 1~7,核電站2002年第11期
[10] M. Mehregany, C.A. Zorman, "SiC MEMS: opportunities and challenges for applications in harsh environments", Thin Solid Films, 355-356, pp. 518-524, 1999
[11] 林博文, 碳化矽及其他碳化物, 陶瓷技術手冊(下)修訂版, pp.745-776,1999.
[12] J. Eid, I. G. Galben, “3C-SiC growth on Si substrates via CVD: An introduction”, NOVASiC, 2008
[13] Stefanos Mourdikoudis , Konstantinos Simeonidis, Advanced characterization of 3C-SiC epitaxial layer by TEM and XRD pole figure, NOVASiC, 2008
[14] Krishan K. Chawla, Composite Materials, 2nd edition, Springer, 1998
[15] G. Newsome, Journal of Nuclear Materials, 371, pp. 76–89, 2007
[16] L.L. Snead, T. Nozawa, M. Ferraris, Y. Katoh, R. Shinavski, M. Sawan, “Silicon carbide composites as fusion power reactor structural materials”, Journal of Nuclear Materials, 417, pp. 330–339, 2011
[17] Michio Takeda, Akira Urano, Jun-ichi Sakamoto, Yoshikazu Imai, Journal of Nuclear Materials, 258-263, pp. 1594-1599, 1998
[18] Hiroshi Araki, Hiroshi Suzuki, Wen Yang, Shinji Sato, Tetsuji Noda, Journal of Nuclear Materials , 258-263, pp. 1540-1545, 1998
[19] Ishikawa, “High-strength alkali-resistant sintered SiC fibre stable to 2200℃”, Nature, 391, No. 6669, pp.773, 1998
[20] T. M. Besmann, B.W. Sheldon, R.A. Lowden, and D. P. Stinton, Science, Vol. 253, 1991
[21] K. Shimoda, Akira Kohyama, Tatsuya Hinoki, “High mechanical performance SiC/SiC composites by NITE process with tailoring of appropriate fabrication temperature to fiber volume fraction”, Composites Science and Technology, 69, pp. 1623–1628, 2009
[22] T. Hinoki, W. Zhang, A. Kohyama, S. Sato, T. Noda, Journal of Nuclear Materials, 258-263, pp. 1567-1571, 1998
[23] C. A. Lewinsohn, R. H. Jones, G. E. Youngblood, C. H. Henager, Journal of Nuclear Materials, 258-263, pp. 1557-1561, 1998
[24] T. Hinoki, L.L. Snead, Y. Katoh, A. Kohyama, R. Shinavski, Journal of Nuclear Materials, 283-287, pp. 376-379, 2000
[25] Takashi Nozawa, Kazumi Ozawa, Sosuke Kondo, Tatsuya Hinoki, Yytai Katoh, Lance L. Snead, Akira Kohyama, Journal of ASTM International, Vol.2, No.3, March 2005
[26] H. Kishimoto , Y. Katoh , A. Kohyama, Journal of Nuclear Materials, 307–311, pp. 1130–1134, 2002
[27] W. Zhang, T. Hiniki, Y. Katoh, A. Kohyama, T. Noda, T. Muroga, J. Yu, Journal of Nuclear Materials, 258-263 ,pp. 1577, 1998
[28] Toshihiro Ishikawa, “A tough, thermally conductive silicon carbide composite with high strength up to 1600℃ in air”, Science, 282, pp. 1295-2697, 1998
[29] Toshihiro Ishikawa, “SA-Tyrannohex-based Composite for High Temperature Applications”, Advances in Science and Technology, 71, pp. 118-126, 2010
[30] Yutai Katoh, Lance L. Snead, Izabela Szlufarska, William J. Weber, “Radiation effects in SiC for nuclear structural applications”, Current Opinion in Solid State and Materials Science, 16, pp. 143–152, 2012
[31] Yueh K, Carpenter D, Feinroth H, Clad in Clay. “Nucl Eng Int” pp. 6-14, 2010
[32] George Griffith , U.S. Department of Energy Accident Resistant SiC Clad Nuclear Fuel Development, Oct. 2011
[33] Katoh Y, Ozawa K, Hinoki T, Choi YB, Snead LL, Hasegawa A, “Mechanical properties of advanced SiC fiber composites irradiated at very high temperatures”, Journal of Nuclear Materials, 20, pp. 416-417, 2011
[34] Snead LL, Nozawa T, Katoh Y, Byun TS, Kondo S, Petti DA, “Handbook on SiC properties for fuel performance modeling”, Journal of Nuclear Materials , 77, pp. 329-371, 2007
[35] Katoh Y, Nozawa T, Snead LL, Ozawa K, Tanigawa H. “Stability of SiC and its composites at high neutron fluence”, Journal of Nuclear Materials, 5, 400-417, 2011
[36] Jones RH, Henager CH. “Subcritical crack growth processes in SiC/SiC ceramic matrix composites”, Journal of the European Ceramic Society, 25, pp. 1717-1722, 2005
[37] Snead LL, Katoh Y, Connery S. “Swelling of SiC at intermediate and highirradiation temperatures”, Journal of Nuclear Materials, 367, 677-684, 2007
[38] L.H. Rovner and G.R. Hopkins, Nuclear Technology, 29, 274, 1976
[39] Zinkle S. J. “Fusion materials science: overview of challenges and recent progress”, Phys Plasmas, 12, 2005
[40] Jones RH, Giancarli L, Hasegawa A, Katoh Y, Kohyama A, Riccardi B. “Promise and challenges of SiCf/SiC composites for fusion energy applications”. Journal of Nuclear Materials, 307, 1057–1072, 2002
[41] S. Kondo, Y. Katoh, L.L. Snead, “Cavity swelling and dislocation evolution in SiC at very high temperatures”, Journal of Nuclear Materials, 386–388, pp. 222–226, 2009
[42] S. Kondo Y. Katoh, L.L. Snead, “Microstructural defects in SiC neutron irradiated at very high temperatures “, Journal of Nuclear Materials , 382, pp. 160–169, 2008
[43] T. Sawabe, M. Akiyoshi, K. Ichikawa, K. Yoshida, T. Yano, “Microstructure of heavily neutron-irradiated SiC after annealing up to 1500℃”, Journal of Nuclear Materials, 386–388, pp. 333–337, 2009
[44] T. Yano, H. Miyazaki, M. Akiyoshi, T. Iseki, “X-ray diffractometry and high-resolution electron microscopy of neutron-irradiated SiC to a fluence of 1.9 ×1027 n/m2”, Journal of Nuclear Materials, 253, pp. 78–86, 1998
[45] Y. Katoh, N. Hashimoto, S. Kondo, L.L. Snead, A. Kohyama, “Microstructural development in cubic silicon carbide during irradiation at elevated temperatures”, Journal of Nuclear Materials, 351, pp. 228-240, 2006
[46] Sosuke Kondo, Yutai Katoh, and Lance L. Snead, “Analysis of grain boundary sinks and interstitial diffusion in neutron-irradiated SiC”, PHYSICAL REVIEW B, 83, pp. 075202, 2011
[47] Yutai Katoh, Sosuke Kondo, Lance L. Snead. “Microstructures of beta-silicon carbide after irradiation creep deformation at elevated temperatures”, Journal of Nuclear Materials, 382, pp. 170–175, 2008
[48] J. Ziegler, Particle interactions with matter.
[49] J.F. Ziegler, J.P. Biersack, and U. Littmark, “Stopping and Range of Ions in Solids” , Pergamon Press, New York, 1985, Vol. 1
[50] Donald R. Olander, Fundamental aspects of nuclear reactor fuel elements, 1976
[51] 材料電子顯微鏡學,國科會精儀中心,科儀叢書3
[52] 汪建民、杜正恭,材料分析,中國材料科學學會,1998.
[53] R. F. Egerton, “Electron-energy loss spectroscopy in the electron microscopy “, Plenum Press, New York, 1996
[54] H. Shuman, C. F. Chang and A. P. Somlyo, Ultramicroscopy, 19, pp. 121, 1986
[55] F. Hofer and P. Warbichler, Ultramicroscopy, 63, pp. 21,1996
[56] N. Bonnet, C. Coliex, C. Mory and M. Tence, “Scanning Microscopy 2(Suppl.)” , 351, 1988
[57] A. Berger, J. Mayer and H. Kohl, Ultramicroscopy, 55, pp. 101,1994
[58] P. A. Crozier and R. F. Egerton, Ultramicroscopy, 27, pp. 9, 1988
[59] D. B. Williams and C. B. Carter, Transmission Electron Microscopy, Plenum Press. New York & London, 1996
[60] T. Malis, S. Cheng and R. F. Egerton, J. Electron. Microsc. Tech., 8, pp. 8471, 1988
[61] MacTempas User Manual, HRTEM Image Simulation Software Package. Total Reolution.
[62] 台灣電力公司100年年報
[63] C. Y. Tang, F. H. Li, R. Wang, J. Zou, X. H. Zheng, and J. W. Liang, “Atomic configurations of dislocation core and twin boundaries in 3C-SiC studied by high-resolution electron microscopy”, PHYSICAL REVIEW B, 75, pp. 184103, 2007
[64] 何宗融,「單晶碳化矽在高溫矽離子輻照下之微結構變化」,國立清華大學工程與系統科學所,碩士論文,中華民國九十七年
[65] Denteneer, P.J.H., J. Tersoff, D. Vanderbilt and V. Vitek, “Atomic Scale Calculations in Materials Science”, MRS Symp. Proc., 343, p.p 141, 1989
[66] Cheng C., Heine V. and Needs R.J., J. Phys: Condens. Matter, pp. 5115, 1990
[67] Karch K., Wellenhofer G., Pavone P., Rössler U. and Strauch D., Proc. 22nd Int. Conf. on Phys. Semic., p.p. 401, 1994
[68] Käckell P., Furthmüller J. and Bechstedt F., Phys. Rev. B, 58, p.p. 1326, 1998
[69] Hisaomi Iwata, Ulf Lindefelt, Sven Oberg and Patrick R Briddon, “Theoretical study of planar defects in silicon carbide”, J. Phys.: Condens. Matter, 14, pp.12733-12740, 2002
[70] Yoshitaka Umeno, Kuniaki Yagi, and Hiroyuki Nagasawa, “Ab initio density functional theory calculation of stacking fault energy and stress in 3C-SiC”, Phys. Status Solidi B, 249, p.p. 1229-1234, 2012
[71] D. Shindo, Y. Ikematsu, S.-H. Lim, and I. Yonenaga, “Digital Electron Microscopy on Advanced Materials”, MATERIALS CHARACTERIZATION, 44, p.p. 375-384, 2000
[72] Y. Tomokiyo, T. Kuroiwa, “Defects occurring at or near surfaces in a-Al2O3 during electron irradiation”, Ultramicroscopy, 39, p.p. 213-221, 1991
[73] S. H. Oh, Y. Kauffmann, C. Scheu, W. D. Kaplan, M. Ruhle, “Ordered Liquid Aluminum at the Interface with Sapphire”, Science , 310, .pp. 661, 2005
[74] C.L. Chen, H. Furusho and H. Mori, Effects of temperature and electron energy on the electron-irradiation-induced decomposition of sapphire, Philosophical Magazine Letters, 90, No. 10, p.p. 715–721, 2010
[75] F.W. CLINARD, Jr. and G.F. HURLEY, NEUTRON IRRADIATION DAMAGE IN MgO, Al2O3 and MgAl2O4 CERAMICS, Journal of Nuclear Materials, 108 & 109, pp. 655–670, 1982
[76] J Yamasaki, S Inamoto, Y Nomura, H Tamaki and N Tanaka, “Atomic structure analysis of stacking faults and misfit dislocations at3C-SiC/Si(0 0 1) interfaces by aberration-corrected transmission electron microscopy”, J. Phys. D: Appl. Phys., 45, p.p. 494002, 2012
[77] S. J. Zinkle, L. E. Seitzman, W. G. Wolfer, “I. Energy calculations for pure metals”, Philosophical Magazine A, 55, p.p.111-125, 1987
[78] T. Ohshima, A. Uedono, K. Abe, H. Itoh, Y. Aoki, M. Yoshikawa, S. Tanigawa, I. Nashiyama, “Characterization of vacancy-type defects and phosphorus donors introduced in 6H-SiC by ion implantation”, Appl. Phys., 67, p.p. 407–412, 1998.
[79] L. Vincent, T. Sauvage, G. Carlot, P. Garcia, G. Martin, M.F. Barthe, P. Desgardin, “Thermal behavior of helium in silicon carbide: Influence of microstructure”, Vacuum, 83,p.p. 36-39, 2009
[80] 鮑忠興、劉思謙,近代穿透式電子顯微鏡實務,滄海書局,2012
[81] JEM-ARM200F INSTRUCTIONS, JEOL, 2012
[82] F. Gao, E. J. Bylaska, W. J. Weber, “Native defect properties in B-SiC: Ab initio and empirical potential calculations”, Nuclear Instruments and Methods in Physics Research B, 180, p.p. 286-292, 2001
[83] F. Krumeich, E. Muller, R.A. Wepf, “Phase-contrast imaging in aberration-corrected scanning transmission electron microscopy”, Micron, 43, p.p. 1-14, 2013
[84] E. Okunishi, H. Sawada, Y. Kondo, “Experimental study of annular bright field (ABF) imaging using aberration-corrected scanning transmission electron microscopy (STEM)”, Micron, 43, p.p. 538-544, 2012
[85] Philip E. Batson, “Hydrogen brightens up”, NATURE MATERIALS, 10, p.p. 270, 2011
[86] T. Taguchi, N. Igawa, S. Miwa, E. Wakai, S. Jitsukawa, L. L. Snead, A. Hasegawa, “Synergistic effects of implanted helium and hydrogen and the effect of irradiation temperature on the microstructure of SiC/SiC composites”, Journal of Nuclear Materials, 335, p.p. 508, 2004
[87] Chun-Yu Ho, Shou-Chen Tsai, Hua-Tay Lin, Fu-Rong Chen, Ji-Jung Kai, “Microstructural investigation of Si-ion-irradiated Single Crystal 3C-SiC and SA-Tyrannohex SiC Fiber-bonded Composite at High Temperatures”, Journal of Nuclear Materials, 443, p.p. 1, 2013
[88] P. Pirouz and J.W. Yang, “Polytypic transformations in SiC: the role of TEM”, Ultramicroscopy, 51, p.p. 189, 1993