簡易檢索 / 詳目顯示

研究生: 許韶庭
Hsu, Shao-Ting
論文名稱: 應用田口方法於氧化鋅奈米柱之深寬比最大化研究
Application of Taguchi Method for Aspect Ratio Maximum of ZnO Nanorod
指導教授: 陳榮順
Chen, Rong-Shun
口試委員: 羅丞曜
Lo, Cheng-Yao
林建宏
Lin, Chien-Hung
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 85
中文關鍵詞: 氧化鋅奈米柱水溶液法田口方法深寬比
外文關鍵詞: ZnO nanorods, Aqueous solution method, Taguchi method, Aspect ratio
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以濃度1:1之硝酸鋅六水合物(Zinc nitrate hexahydrate)與六亞甲基四胺(HTMA)調配之水溶液,在濺鍍有氧化鋅種子層之聚醯亞胺(Polyimide)基板上,利用水溶液法成長一維氧化鋅奈米柱,並導入田口方法作為最大化奈米柱深寬比的實驗方法,建立直交表以簡化資料分析的工作,執行實驗且利用場發射掃描式電子顯微鏡、能量散射光譜儀觀察各組實驗奈米柱之結晶、微結構與成份,並探討各因子對於奈米柱深寬比之影響力與原因。依上述實驗結果得到在環境溫度105 °C、成長時間11小時、反應物濃度0.05 M、種子層厚度200 nm、濺鍍功率100 W的最大化參數下,有最大的奈米柱深寬比,因此再依此控制因子製作高深寬比之氧化鋅奈米柱。最後將上述條件所製作的兩片具有氧化鋅奈米柱結構之基板,上下貼合組裝,形成仿生交互鏈鎖結構之觸覺感測器,藉由施加壓力導致上下奈米柱之間接觸電阻發生改變作為感測機制,製作成一高靈敏度之觸覺感測器,並探討此高深寬比之氧化鋅奈米柱在感測器應用上的優勢。


    In this study, an aqueous solution is prepared by mixing zinc nitrate hexahydrate and hexamethylenetetramine at 1:1 ratio of concentration. One-dimensional Zinc Oxide (ZnO) nanorods is synthesized on polyimide substrate by using the aqueous solution method. Taguchi method is introduced as an experiment method to maximize the aspect ratio of ZnO nanorods. Establish an orthogonal array to simplify the work of data analysis, based on the Taguchi method. The crystal structure and composition of the ZnO nanorods are observed by field emission scanning electron microscopy and energy-dispersive X-ray spectroscopy, respectively. Finally, the high aspect ratio ZnO nanorods are fabricated again under the maximum parameters, in which the ambient temperature is 105 °C, growth time is 11 hours, reactant concentration is 0.05 M, seed layer thickness is 200 nm and sputtering power is 100 W. To explore the advantages of high aspect ratio ZnO nanorod on sensor application, two substrates with ZnO nanorods are combined to each other to form a tactile sensor with interlocked structure. In experiments, applied force induces a change of the contact resistance between two interlocked ZnO nanorods, which is applied as sensing mechanism of the high sensitivity tactile sensor.

    摘要 I ABSTRACT II 致謝 III 目錄 IV 圖目錄 VII 表目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目標 2 1.3 文獻回顧 4 1.4 論文架構 11 第二章 理論基礎 13 2.1 氧化鋅結構與基本特性 13 2.2 氧化鋅薄膜導電性 16 2.3 濺鍍原理 17 2.4 水溶液法 19 2.5 田口方法 21 2.5.1 田口方法簡介 21 2.5.2 實驗設計與直交表 22 2.5.3 因子效應 24 第三章 研究方法 27 3.1 實驗架構 27 3.2 基板準備 28 3.3 濺鍍氧化鋅種子層 30 3.4 水溶液法製程 31 3.5 實驗分析儀器 33 3.5.1 場發射掃描式電子顯微鏡 33 3.5.2 能量散測光譜儀 35 3.6 製程參數選擇 36 第四章 實驗結果與討論 39 4.1 氧化鋅奈米柱深寬比最大化結果 39 4.1.1 執行實驗 39 4.1.2 因子反應分析 65 4.1.3 實驗分析結果 69 4.2 能量散射光譜儀分析 71 4.3 觸覺感測元件 72 4.3.1 感測原理 72 4.3.2 觸覺感測元件製作流程 73 4.3.3 靜態壓力量測結果 75 第五章 結論與未來工作 78 5.1 結論 78 5.2 未來工作 79 參考文獻 80

    [1] A. Y. Kiyoshi Takahashi, Adarsh Sandhu, Wide Bandgap Semiconductors: Fundamental Properties and Modern Photonic and Electronic Devices. 2007.
    [2] P. X. Gao and Z. L. Wang, "Nanoarchitectures of semiconducting and piezoelectric zinc oxide," Journal of Applied Physics, vol. 97, no. 4, p. 044304, 2005.
    [3] M. Chen, X. Wang, Y. Yu, Z. Pei, X. Bai, C. Sun, R. Huang, and L. Wen, "X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films," Applied Surface Science, vol. 158, no. 1-2, pp. 134-140, 2000.
    [4] D. C. Look, C. Coşkun, B. Claflin, and G. C. Farlow, "Electrical and optical properties of defects and impurities in ZnO," Physica B: Condensed Matter, vol. 340, pp. 32-38, 2003.
    [5] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. Aplin, J. Park, X. Bao, Y.-H. Lo, and D. Wang, "ZnO nanowire UV photodetectors with high internal gain," Nano letters, vol. 7, no. 4, pp. 1003-1009, 2007.
    [6] X. Jiaqiang, C. Yuping, C. Daoyong, and S. Jianian, "Hydrothermal synthesis and gas sensing characters of ZnO nanorods," Sensors and Actuators B: Chemical, vol. 113, no. 1, pp. 526-531, 2006.
    [7] K.-S. Kim and H. W. Kim, "Synthesis of ZnO nanorod on bare Si substrate using metal organic chemical vapor deposition," Physica B: Condensed Matter, vol. 328, no. 3-4, pp. 368-371, 2003.
    [8] N. Alvi, W. ul Hassan, B. Farooq, O. Nur, and M. Willander, "Influence of different growth environments on the luminescence properties of ZnO nanorods grown by the vapor–liquid–solid (VLS) method," Materials Letters, vol. 106, pp. 158-163, 2013.
    [9] Y.-C. Yoon, K.-S. Park, and S.-D. Kim, "Effects of low preheating temperature for ZnO seed layer deposited by sol–gel spin coating on the structural properties of hydrothermal ZnO nanorods," Thin Solid Films, vol. 597, pp. 125-130, 2015.
    [10] L. Vayssieres, "Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions," Advanced Materials, vol. 15, no. 5, pp. 464-466, 2003.
    [11] J. Ye, S. Gu, S. Zhu, T. Chen, L. Hu, F. Qin, R. Zhang, Y. Shi, and Y. Zheng, "The growth and annealing of single crystalline ZnO films by low-pressure MOCVD," Journal of Crystal Growth, vol. 243, no. 1, pp. 151-156, 2002.
    [12] K. H. Yoon and J. Y. Cho, "Photoluminescence characteristics of zinc oxide thin films prepared by spray pyrolysis technique," Materials Research Bulletin, vol. 35, no. 1, pp. 39-46, 2000.
    [13] Y. Wang, S. Lau, X. Zhang, H. Lee, S. Yu, B. Tay, and H. Hng, "Evolution of visible luminescence in ZnO by thermal oxidation of zinc films," Chemical Physics Letters, vol. 375, no. 1-2, pp. 113-118, 2003.
    [14] W. Water and S.-Y. Chu, "Physical and structural properties of ZnO sputtered films," Materials Letters, vol. 55, no. 1-2, pp. 67-72, 2002.
    [15] Y. Nakanishi, A. Miyake, H. Kominami, T. Aoki, Y. Hatanaka, and G. Shimaoka, "Preparation of ZnO thin films for high-resolution field emission display by electron beam evaporation," Applied Surface Science, vol. 142, no. 1-4, pp. 233-236, 1999.
    [16] L. Duan, X. Zhao, Y. Zhang, H. Shen, and R. Liu, "Fabrication of flexible Al-doped ZnO films via sol–gel method," Materials Letters, vol. 162, pp. 199-202, 2016.
    [17] L. Vayssieres, K. Keis, S.-E. Lindquist, and A. Hagfeldt, "Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO," The Journal of Physical Chemistry B, vol. 105, no. 17, pp. 3350-3352, 2001.
    [18] Q. Li, V. Kumar, Y. Li, H. Zhang, T. J. Marks, and R. P. Chang, "Fabrication of ZnO nanorods and nanotubes in aqueous solutions," Chemistry of Materials, vol. 17, no. 5, pp. 1001-1006, 2005.
    [19] Z. Liu, E. Lei, J. Ya, and Y. Xin, "Growth of ZnO nanorods by aqueous solution method with electrodeposited ZnO seed layers," Applied Surface Science, vol. 255, no. 12, pp. 6415-6420, 2009.
    [20] M. Guo, P. Diao, and S. Cai, "Hydrothermal growth of well-aligned ZnO nanorod arrays: Dependence of morphology and alignment ordering upon preparing conditions," Journal of Solid State Chemistry, vol. 178, no. 6, pp. 1864-1873, 2005.
    [21] J. Wang, X. Sun, Y. Yang, H. Huang, Y. Lee, O. Tan, and L. Vayssieres, "Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications," Nanotechnology, vol. 17, no. 19, p. 4995, 2006.
    [22] L. Ji, S. Peng, Y.-K. Su, S.-J. Young, C. Wu, and W. Cheng, "Ultraviolet photodetectors based on selectively grown ZnO nanorod arrays," Applied Physics Letters, vol. 94, no. 20, p. 203106, 2009.
    [23] W. Deng, L. Jin, B. Zhang, Y. Chen, L. Mao, H. Zhang, and W. Yang, "A flexible field-limited ordered ZnO nanorod-based self-powered tactile sensor array for electronic skin," Nanoscale, vol. 8, no. 36, pp. 16302-16306, 2016.
    [24] M.-S. Suen, Y.-C. Lin, and R. Chen, "A flexible multifunctional tactile sensor using interlocked zinc oxide nanorod arrays for artificial electronic skin," Sensors and Actuators A: Physical, vol. 269, pp. 574-584, 2018.
    [25] A. R. Hutson, "Hall effect studies of doped zinc oxide single crystals," Physical review, vol. 108, no. 2, p. 222, 1957.
    [26] S. Pearton, D. Norton, K. Ip, Y. Heo, and T. Steiner, "Recent progress in processing and properties of ZnO," Progress in materials science, vol. 50, no. 3, pp. 293-340, 2005.
    [27] Z. L. Wang, "Nanogenerators for self-powered devices and systems," ed: Georgia Institute of Technology, 2011.
    [28] R. Kumar, O. Al-Dossary, G. Kumar, and A. Umar, "Zinc oxide nanostructures for NO 2 gas–sensor applications: A review," Nano-Micro Letters, vol. 7, no. 2, pp. 97-120, 2015.
    [29] J. Morales, E. Andrade, and M. Miki-Yoshida, "Influence of Al, In, Cu, Fe and Sn dopants in the microstructure of zinc oxide thin films obtained by spray pyrolysis," Thin Solid Films, vol. 366, no. 1-2, pp. 16-27, 2000.
    [30] A. Aktaruzzaman, G. Sharma, and L. Malhotra, "Electrical, optical and annealing characteristics of ZnO: Al films prepared by spray pyrolysis," Thin solid films, vol. 198, no. 1-2, pp. 67-74, 1991.
    [31] J. Koßmann and C. Hättig, "Investigation of interstitial hydrogen and related defects in ZnO," Physical Chemistry Chemical Physics, vol. 14, no. 47, pp. 16392-16399, 2012.
    [32] M. Satoh, N. Tanaka, Y. Ueda, S. Ohshio, and H. Saitoh, "Epitaxial growth of zinc oxide whiskers by chemical-vapor deposition under atmospheric pressure," Japanese journal of applied physics, vol. 38, no. 5B, p. L586, 1999.
    [33] M. Guo, C. Yang, M. Zhang, Y. Zhang, T. Ma, X. Wang, and X. Wang, "Effects of preparing conditions on the electrodeposition of well-aligned ZnO nanorod arrays," Electrochimica Acta, vol. 53, no. 14, pp. 4633-4641, 2008.
    [34] W. Feng, B. Wang, P. Huang, X. Wang, J. Yu, and C. Wang, "Wet chemistry synthesis of ZnO crystals with hexamethylenetetramine (HMTA): Understanding the role of HMTA in the formation of ZnO crystals," Materials Science in Semiconductor Processing, vol. 41, pp. 462-469, 2016.
    [35] 李輝煌, 田口方法:品質設計的原理與實務, 第四版 ed. 高立圖書有限公司, 2011.
    [36] http://www.taimide.com.tw/m/ (accessed 2019).
    [37] 林羿呈, "以氧化鋅交互鏈鎖奈米柱陣列製作可撓式複合功能觸覺感測器," 國立清華大學動力機械工程學系碩士論文, 2016.
    [38] L.-W. Ji, S.-M. Peng, J.-S. Wu, W.-S. Shih, C.-Z. Wu, and I.-T. Tang, "Effect of seed layer on the growth of well-aligned ZnO nanowires," Journal of Physics and Chemistry of Solids, vol. 70, no. 10, pp. 1359-1362, 2009.
    [39] H. Wang, J. Xie, K. Yan, and M. Duan, "Growth mechanism of different morphologies of ZnO crystals prepared by hydrothermal method," Journal of Materials Science & Technology, vol. 27, no. 2, pp. 153-158, 2011.
    [40] W.-Y. Chang, T.-H. Fang, and J.-H. Tsai, "Electromechanical and photoluminescence properties of Al-doped ZnO nanorods applied in piezoelectric nanogenerators," Journal of Low Temperature Physics, vol. 178, no. 3-4, pp. 174-187, 2015.

    QR CODE