簡易檢索 / 詳目顯示

研究生: 蔡宏駿
Hung-Chun Tsai
論文名稱: Investigation on Effect of Plasma Treatments on Ultra-Low-K Film and Gold Film
電漿處理對超低介電常數薄膜與金薄膜之影響研究
指導教授: 張一熙
Yee-Shyi Chang
張守一
Shou-Yi Chang
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 105
中文關鍵詞: 電介質介面黏著性奈米刮痕實驗
外文關鍵詞: Dielectrics, Interface adhesion, Nanoscratch test, Gold
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 首先研究不同的電漿處理對多孔性SiOCH超低介電常數薄膜之性質的影響。SiOCH超低介電常數薄膜對於僅有氨以及氫與氨兩步驟之電漿處理都在表面化學鍵結如Si-CH3和Si-H鍵結以及電性上都有不同程度的降低。薄膜的表面粗糙度在經過電漿處理之後變的比較平坦。與氨之電漿處理比較起來, 氫與氨兩步驟之電漿處理對SiOCH超低介電常數薄膜造成更多的結構變化以及電性的惡化。在經過氫與氨兩步驟之電漿處理之後與剛熱處理的薄膜比較起來, 崩潰電壓下降了22%。
    接下來探討不同的電漿處理對於多孔性SiOCH超低介電常數與SiCN蝕刻停止層之間的介面鍵結結構與介面強度之影響。經由X射線光電子能譜分析, 在SiOCH與SiCN的介面有著約10 nm厚之複雜混合鍵結區域。經由電漿處理之後, 尤其是氫與氨兩步驟之電漿處理, 一層約30 nm之碳元素缺乏層包含較多之S-O相關的高鍵結能之鍵結形成於介面處。而SiOCH與SiCN之介面黏著強度由微米刮痕測試以及奈米刮痕測試量測得之。對於沒有經過電獎處理的介面, 黏著能經由奈米刮痕測試以及微米刮痕測試量測為0.22及0.44 J/m2。經由電漿處理之後, 尤其是氫與氨兩步驟之電漿處理, 介面黏著能提高到0.41及0.89 J/m2。主要是因為較多的Si-O高鍵結能之鍵結形成於介面處。
    最後, 金薄膜暴露在氧電漿之中可以被氧化。氧化金有著很短的半衰期, 在22 ℃為22小時而在0 ℃為166小時。氧化金分解之活化能為57 KJ/mol表示了即使在低溫也非常的不穩定。從電阻值的結果也顯示了金表面經由氧電漿處理之後, 其電性不會降低因為氧化金會回復為元素金。


    The effect of different plasma treatments on the properties of porous SiOCH ultra-low-dielectric-constant (ULK) film have been studied first. The SiOCH ULK films with NH3 only and H2/NH3 plasmas treatments resulted in various degrees of degradation of surface chemical bonds, Si-CH3 and Si-H and electrical properties. Surface roughness of the films with plasma treatments became smoothened. H2/NH3 plasmas treatment caused more SiOCH ULK film structural change and electrical deterioration compared with NH3 only plasma treatment. Moreover, after H2/NH3 two-step treatment, Ebd decreased by 22% as compared with the as-cured film.
    Afterward, the effect of different plasma treatments on the interfacial bonding configurations and adhesion strengths between porous SiOCH ULK film and SiCN etch stop layer have been investigated. From X-ray photoelectron spectroscopic analyses, interlayer regions of about 10 nm thick with complicated mixing bonds were found at SiOCH/SiCN interfaces. With plasma treatments, especially H2/NH3 two-step plasma, a carbon-depletion region of about 30 nm thick with more Si-O related bonds of high binding energy formed at the interface. Furthermore, the adhesion strengths of the SiOCH/SiCN interfaces were measured by nanoscratch and microscratch tests. For the untreated interface, the adhesion energy was obtained as about 0.22 and 0.44 J/m2 by nanoscratch and microscratch tests, respectively. After plasma treatments, especially the H2/NH3 treatment, the interfacial adhesion energy was effectively improved to 0.41 and 0.89 J/m2 because more Si-O bonds of high binding energy formed at the interfaces.
    Finally, by exposure to O2-plasma, gold films were oxidized. Gold oxide (Au2O3) has a short halflife of 22 h at 22 ℃ and 166 h at 0 ℃, with an activation energy of dissociation of 57 kJ/mol, indicating instability even at low temperatures. The results of electrical resistance also revealed that the electrical properties are not degraded after O2-plasma cleaning of the surface of gold due to the restoration of elemental gold.

    Acknowledgement i Abstract (Chinese) ii Abstract (English) iii Content v Table Captions vii Figure Captions vii Chapter 1 Introduction 1 1.1 Interconnect Scheme for 65nm and below 1 1.2 Low Dielectric Constant Materials 5 1.3 Plasma Treatments 8 1.4 Scratch test 10 1.5 Gold Metallization 14 1.5 Organization of the Thesis 16 Chapter 2 Experimental 36 2.1 Plasma Enhance Chemical Vapor Deposition (PECVD) 36 2.2 Fourier Transform Infrared Spectroscopy (FTIR) 36 2.3 X-Ray Photoelectron Spectroscopy (XPS) 36 2.4 Atomic Force Microscope (AFM) 37 2.4 Capacitance-Voltage Characteristics (C-V) 37 2.5 Sheet Resistance Measurement 38 Chapter 3 Effect of Plasma Treatments on Properties of SiOCH Ultra-Low-k Film 41 3.1 Introduction 41 3.2 Experimental 43 3.3 Results and Discussion 44 3.3.1 Film Composition and Bonding Structures 44 3.3.2 Electrical Properties 45 3.3.3 Surface Roughness 46 3.4 Conclusion 48 Chapter 4 Effect of Plasma Treatments on Interface Adhesion between SiOCH Ultra-Low-k Film and SiCN Etch Stop Layer 57 4.1 Introduction 57 4.2 Experimental 59 4.3 Results and Discussion 61 4.3.1 Chemical compositions and interfacial bonding configurations 61 4.3.2 Interface adhesion measured by nanoscratch test 63 4.3.3 Interface adhesion measured by microscratch test 64 4.4. Conclusions 66 Chapter 5 Effect of Plasma Treatments on Gold Film 84 5.1 Introduction 84 5.2 Experimental 85 5.3 Results and Discussion 86 5.4 Conclusions 89 Chapter 6 Summary and Future Work 93 6.1 Summary 93 6.2 Future Works 95 Reference 96 Publication 105

    [1] T. Homma, Mater. Sci. Eng. R., 23 (1998) 243.
    [2] K. Maex, M.R. Baklanov, D. Shamiryan, F. Lacopi, S.H. Brongersma, and Z.S. Yanovitskaya, J. Appl. Phys., 93 (2003) 8793.
    [3] A. Grill and V. Patel, J. Appl. Phys., 85 (1999) 3314.
    [4] L.L. Chapelon, V. Arnal, M. Broekaart, L.G. Gosset, J. Vitiello, and J. Torres, Microelectron. Eng., 76 (2004) 1.
    [5] S.Y. Chang, T.J. Chou, Y.C. Lu, S.M. Jang, S.J. Lin, M.S. Liang, J. Electrochem. Soc., 151 (2004) F146.
    [6] S.Y. Chang, S.M. Jang, S.J Lin, M.S. Liang, Thin Solid Films, 466 (2004) 54.
    [7] M. Fayolle, G. Passemard, O. Louveau, F. Fusalba, J. Cluzel, Microelectronic Eng., 70 (2003) 255.
    [8] F. Iacopi, S.H. Brongersma, B. Vandevelde, M. O’Toole, D. Degryse, Y. Travaly, K. Maex, Microelectronic Eng., 75 (2004) 54.
    [9] S. H. Liu, E. Tolentino, Y. Lim, and A. Koo, J. Electro. Mater., 30, (2001) 299.
    [10] B. Y. Tsui, K. L. Fang, S. E. Lee, IEEE Transactions on Electron Devices, 48 (2001) 2375.
    [11] M. Vogt, M. Kachel, M. Plotner, K. Drescher, Microelectronic Eng., 37-38 (1997) 181.
    [12] M. Armacost, A. Augustin, P. Felsner, Y. Feng, G. Friese, J. Heidenreich, G. Hueckel, O. Prigge, K. Stein, IEDM (2000) 157.
    [13] R. Kroger, M. Eizenberg, D. Cong, N. Yoshida, L. Y. Chen, S. Ramaswami, D. Carl, J. Electrochem. Soc., 146 (1999) 3248.
    [14] M. J. Loboda, Microelectronic Eng., 50 (2000) 15.
    [15] C. Shim, J. Yang, M. Choi, D. Jung, Jpn. J. Appl. Phy., 42 (2003) L910.
    [16] S. Sugahara, K. Usami, M. Matsumura, Jpn. J. Appl. Phys., 38 (1999) 1428.
    [17] L.L. Chapelon, V. Arnal, M. Broekaart, L.G. Gosset, J. Vitiello, J. Torres, Microelectronic Eng., 76 (2004) 1.
    [18] R. L. Rhoades, G. Banerjee, Semiconductor Fabtech, 32 (2006) 62.
    [19] J. gambino, A. Stamper, T. McDevitt, V. McGahay, S. Luce, T. Pricer, B. Porth, C. Senowitz, R. Kontra, M. Gibson, H. Wildman, A. Piper, C. Benson, T. Standaert, P. Biolsi, E. Cooney, Proceedings of 9th IPFA Conperence, (2002) 111.
    [20] S. Yang, J. C. H. Pai, C. S. Pai, G. Dabbaagh, O. Nalamasu, E. Reichmanis J. Swputro, Y. S. Obeng, J. Vac. Sci. Technol., B19 (2001) 2115.
    [21] C. Y. Chang and S. M. Sze, “ULSI Technology”, McGraw-Hill Company U. S. A., (1996) p. 453
    [22] The International Technology Roadmap for Semiconductors, http://www.itrs.net/.
    [23] S. Q. Wang, B. Zhao, J. Vac. Sci. Technol., B8 (1996) 2656.
    [24] S. Bothra, M. Kellam, P. Garrou, Proceeding of VLSI Multilevel Interconnect Conference, (1997) 131.
    [25] J. Cluzel, F. Mondon, Y. Lonquest, Y. Morand, G. Reimbold, Microelectronics Reliability, 40 (2000) 675.
    [26] F. Kuchenmeister, U. Schubert, C. Wenzel, Microelectronic Eng., 50 (2000) 47.
    [27] Y. Uchida, K. Taguchi, S. Sugahara, M. Matsumura, Jpn. J. Appl. Phys., 38 (1999) 2368.
    [28] Y. H. Kim, S. K. Lee, H. J. Kim, J. Vac. Sci. Technol., A18 (2000) 1216.
    [29] W. Qingguo, K. Gleason, J. Vac. Sci. Technol. A 21 (2003) 388.
    [30] J. Lubguban, T. Rajagopalan, N. Mehta, B. Lahlouh, S. Simon, S. Gangopadhyay, J. Appl. Phys. 92 (2002) 1033.
    [31] X. Jun, C. S. Yang, H. R. Jang, C. K. Choi, J. Electrochem. Soc., 150 (2003) 206.
    [32] L. Favenneca, V. Jousseaume, G. Gerbaud, A. Zenasni, G. Passemard, J. Appl. Phys., 102 (2007) 064107
    [33] V. Jousseaume, Ch. Le Cornec, F. Ciaramella, L. Favennec, A. Zenasni, G. Simon, J. P. Simon, G. Gerbaud, and G. Passemard, MRS Symposia Proceedings No. 914 (Materials Research Society, Pittsburgh, 2006), p. 63.
    [34] A. Grill, J. Appl. Phys,. 93 (2003) 1785
    [35] A. Grill, D. Neumayer, J. Appl. Phys. 94 (2003) 6697.
    [36] L. Favennec, V. Jousseaume, V. Rouessac, F. Fusalba, J. Durand, G. Passemard, Mater. Sci. Semicond. Process. 7 (2004) 277.
    [37] Wong et al., Intel Corp., US Patent #6,734,533, 2004.
    [38] V. Rouessac, L. Favennec, B. Re′miat, V. Jousseaume, G. Passemard, J. Durand, Microelectronic Engineering 82 (2005) 333.
    [39] A. Danel, C. Millet, V. Perrut, J. Daviot, V. Jousseaume, O. Louveau, D. Louis, in: Proceedings of the IEEE 2003 International Interconnect Technology Conference, 2003, p. 248.
    [40] M. Fayolle, G. Passemard, O. Louveau, F. Fusalba, and J. Cluzel, Microelectron. Eng., 70 (2003) 255.
    [41] R.J.O.M. Hoofman, G.J.A.M. Verheijden, J. Michelon, F. Iacopi, Y. Travaly, M.R. Baklanov, Zs. Tokei, G.P. Beyer, Microelectronic Engineering 80 (2005) 337.
    [42] A. Humbert, L. Mage, C. Goldberg, K. Junker, L. Proenca, J.B. Lhuillier, Microelectronic Eng., 82 (2005) 399.
    [43] Y. Zhou, G. Xu, T. Scherban, J. Leu, G. Kloster, C. I. Wu, Characterization and Metrology for ULSI Technology, vol. CP683 (2003) 455.
    [44] A. Grill, V. Patel, J. Electrochem. Soc., 151 (2004) F133.
    [45] Y. H. Wang, D. Gui, R. Kumar, and P. D. Foo, Electrochemical and Solid State letters, 6 (1) (2003) F1.
    [46] C. H. Chen, F. S. Huang, Thin Solid Films, 441 (2003) 248.
    [47] D. Shamiryan, K. Weidner, W. D. Gray, M. R. Baklanov, S. Vanhaelemeersch, K. Maex, Microelectronic Eng. 64 (2002) 361.
    [48] R. Daamen, P. H. L. Bancken, V. H. Nguyen, A. Humbert, G. J. A. M. Verheijden, R. J. O. M. Hoofman, Microelectronic Engineering, 84 (2007) 2177.
    [49] T. C. Chang, P. T. Liu, Y. S. Mor, T. M. Tsai, C. W. Chen, Y. J. Mei, F. M. Pan, W. F. Wu, and S. M. Sze, J. Vac. Sci. Technol. B, 20, 1561 (2002).
    [50] D. Shamiryan, M. R. Baklanov, S. Vanhaelemeersch, and K. Maex, J. Vac. Sci. Technol. B, 20, 1923 (2002).
    [51] T. C. Dalton, N. Fuller, C. Tweedy, D. Dunn, C. Labelle, S. Gates, M. Colburn, S. T. Chen, L. Tai, R. Dellaguardia, K. Petrarca, C. Dziobkowski, K. Kumar, and S. Siddiqui, Proceedings of the IEEE 2004 International Interconnect Technology Conference (2004) p. 154.
    [52] J. Noguchi, N. Ohashi, T. Jimbo, H. Yamaguchi, K. Takeda, K. Hinode, IEEE Trans. Electron Devices 48 (7) (2001) 1340.
    [53] V. C. Ngwana, C. Zhua, A. Krishnamoorthy, Thin Solid Films, 462-463 (2004) 321.
    [54] J. R. Lloyd, M. W. Lane, E. G. Liniger, Proceedings of the International Integrated Reliability Workshop (2002) p. 32.
    [55] T. Saito, Proceedings of International Interconnect Technology Conference (2004) p. 36.
    [56] L. Gosset, Proceedings of the Advanced Metallization Conference (2003) p. 321.
    [57] K. Chattopadhyay, B. van Schravendijk, T. W. Mountsier, G. B. Alers, M. Hornbeck, H. J. Wu, R. Shaviv, G. Harm, D. Vitkavage, E. Apen, Y. Yu, and R. Havemann, Proceedings of International Reliability Physics Symposium (2006) p. 128.
    [58] S. Lin et al., Proceedings IITC, (2001) 146.
    [59] G. Xu, J. He, E. Andideh, J. Bielefeld, and T. Scherban, Proceedings IITC, (2002) 57.
    [60] A. A. Volinsky, N.R. Moody, and W.W. Gerberich, Acta Mater., 50 (2002) 441.
    [61] S.Y. Chang, H.L. Chang, Y.C. Lu, S.M. Jang, S.J. Lin, and M.S. Liang, Thin Solid Films, 460 (2004) 167.
    [62] Q. Ma, J. Mater. Res., 12 (1997) 840.
    [63] R.H. Dauskardt, M. Lane, Q. Ma, and N. Krishna, Eng. Fracture Mech., 61 (1998) 141.
    [64] S.J. Bull and D.S. Rickerby, Surface and Coatings Technol., 42 (1990) 151.
    [65] S.J. Bull, Surface and Coatings Technol., 50 (1991) 25.
    [66] J.H. Lee, W.M. Kim, T.S. Lee, M.K. Chung, B.K. Cheong, and S.G. Kim, Surf. Coat. Technol., 133-134 (2000) 220.
    [67] J. Malzbender, J. M. J. den Toonder, A.R. Balkenende, and G. de With, Mater. Sci. Eng. R, 36 (2002) 47.
    [68] S.Y. Chang and Y.C. Huang, Microelectron. Eng., 84 (2007) 319.
    [69] S.Y. Chang and Y.S. Lee, Jpn. J. Appl. Phys., Part 1, 46 (2007) 1955.
    [70] S.Y. Chang, H.C. Tsai, J.Y. Chang, S.J. Lin, and Y.S. Chang, Thin Solid Films, 2007, in Press.
    [71] S. Venkataraman, D. L. Kohlstedt, and W. W. Gerberich, J. Mater. Res., 7 (1992) 1126.
    [72] H. Ollendorf and D. Schneider, Surf. Coat. Technol., 113 (1999) 86.
    [73] J. Ye, N. Kojima, K. Ueoka, J. Shimanuki, T. Nasuno and S. Ogawa, J. Appl. Phys., 95 (2004) 3704.
    [74] S. J. Bull, E.G. Berasetegui, Tribology International, 39 (2006) 99.
    [75] V. Bellido-Gonzalez, N. Stefanopoulos,. F. Deguilhen, Surface and Coatings Technology, 74-75 (1995) 884
    [76] S. J. Bull, Tribology International, 30 (1997) 491
    [77] T. Ishikawa, K. Okaniwa, M. Komaru, K. Kosaki, Y. Mitsuui, IEEE Trans. Electr. Dev. 41 (1994) 3.
    [78] T. Whitaker, Compound Semiconductors, 7 (4) (2001) 1.
    [79] B. Hammer, J.K. Nørskov, Nature 376 (1995) 238
    [80] L. Maya, M. Paranthaman, T. Thundat, M.L. Bauer, J. Vac. Sci. Technol. B 14 (1996) 15.
    [81] A. Krozer, M. Rodahi, J. Vac. Sci. Technol. A 15 (1997) 1704.
    [82] D.E. King, J. Vac. Sci. Technol. A 13 (1995) 1247.
    [83] N. Saliba, D.H. Parker, B.E. Koel, Surf. Sci. 410 (1998) 270.
    [84] Ch. Linsmeier, J. Wanner, Surf. Sci. 454 (2000) 305.
    [85] B. Koslowski, H.-G. Boyen, C. Wilderrotter, G. Kastle, P. Ziemann, R. Wahrenberg, P. Oelhafen, Surf. Sci. 475 (2001) 1.
    [86] J.M. Gottfried, N. Elghobashi, S.L.M. Schroeder, K. Christmann, Surf. Sci. 523 (2003) 89.
    [87] H. Piao, N.S. McIntyre, Surf. Sci. 421 (1999) L171.
    [88] G.C. Bond, Catal. Today 72 (2002) 5.
    [89] N. X. Randall, R. Consiglio, Rev. Sci. Instrum., 71 (7) (2000) 2796
    [90] S.Y. Chang and Y.C. Huang, Microelectron. Eng., 85 (2008) 332.
    [91] S.Y. Chang, Y.S. Lee, and C.L. Lu, J. Electrochem. Soc., 154 (2007) D241.
    [92] S.Y. Chang, J.Y. Chang, S.J. Lin, H.C. Tsai, and Y.S. Chang, J. Electrochem. Soc., 155 (2008) G39.
    [93] N. Yamada, T. Takahashi, J. Electrochem. Soc., 147 (2000) 1477.
    [94] H.Q. Lu, H. Cui, I. Bhat, S. Murarka, W. Lanford, W.-J. Hsia, W. Li, J. Vac. Sci. Technol., B, 20 (3) (2002) 828.
    [95] S.T. Chen, G.S. Chen, T.J. Yang, J. Electrochem. Soc. 150 (2003) F194.
    [96] C.F. Tsang, Y.J. Su, V.N. Bliznetsov, Thin Solid Films 462/463 (2004) 269.
    [97] J. N. Sun, Y. Hu, W.E. Frieze, W. Chen, D.W. Gidley, J. Electrochem. Soc., 150 (2003) F97.
    [98] D. Ernur, F. Iacopi, L. Carbonell, H. Struyf, K. Maex, Microelectron. Eng. 70 (2003) 285.
    [99] A. V. Vairagar, Z. Gan, W. Shao, S. G. Mhaisalkar, H. Li, K. N. Tu, Z. Chen, E. Zschech, H. J. Engelmann, and S. Zhang, J. Electrochem. Soc., 153 (2006) G840.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE