簡易檢索 / 詳目顯示

研究生: 黃尉翔
論文名稱: 利用模化原子層沉積法製備高有序奈米多孔金屬氧化物
Well-Ordered Nanoporous Metal Oxides from Templated Atomic Layer Deposition
指導教授: 何榮銘
古慶順
口試委員: 賴志煌
蔡德豪
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 93
中文關鍵詞: 高分子嵌段共聚物原子層沉積法金屬氧化物
外文關鍵詞: block copolymer, ALD, metal oxides
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Block copolymers (BCPs) that consist of chemically different components can self-assemble into various ordered nanostructures due to the incompatibility of constituted blocks. Among them, double gyroid (DG) phase with three-dimensional (3D) and bi-continuous networks is one of the appealing morphologies for practical applications due to its unique texture. In this study, we aim to take advantage of the degradable character of ester groups in polylactide-containing BCPs to create nanoporous polymeric materials with DG-forming nanochannels by hydrolysis of polylactide block in polystyrene-block-poly(L-lactide) PS-PLLA block copolymer. Subsequently, the nanoporous polymer can be served as a template for templated atomic layer deposition (ALD). Consequently, a variety of well-defined polymer/metal oxide nanohybrids can be fabricated. To acquire large-area, well-oriented nanostructured thin films from the self-assembly of the PS-PLLA, dip-coating is used in this study because of its low-cost and waste-free process. The thickness and morphologies of the coated film can be precisely controlled via this approach, giving well-ordered gyroid-forming bulk films with micrometer thickness. Consequently, templated ALD is carried out by using nanoporous PS from hydrolyzed PS-PLLA as a template to fabricate PS/ZnO DG nanohybrids. Unlike 1D structure, the 3D bi-continuous networks which have more complex interconnected channels require an optimization of processing parameters for ALD such as exposure time to the precursor gases, precursor partial pressure and deposition temperature. With the appropriate control of those factors, the gyroid-forming metal oxides can be successfully fabricated.
    Although well-defined nanohybrids can be synthesized via templated sol-gel reaction, electrochemical deposition, and electroless plating, it is difficult to control the reaction process to form complex morphologies, such as nanotubes with tunable thickness. As demonstrated in this study, micrometer-thick nanoporous DG ZnO with high porosity and high specific surface area can be successfully fabricated after calcination. Owing to the easy diffusion ability for pore-filling process, the templated ALD is very appealing for the fabrication of nanotubes with tunable thickness through the control of the number of ALD cycles. Moreover, there are many available recipes for the deposition of various metal oxides. As a result, alternating reaction process can be carried out for the formation of more complex morphologies, in particular core-shell morphologies. For instance, with the alternating ALD process with different precursors, ZnO@Al2O3 core-shell metal oxide alloys in PS matrix with DG-forming morphology can be obtained. For applications, nanoporous gyroid ZnO can be acquired after removal of PS template for fabricated PS/ZnO nanohybrids. One of the straightforward applications is the manufacture of a dye-sensitized solar cell (DSSC). As demonstrated in this study, the unique texture of the gyroid-forming nanoporous ZnO provides a good framework for the deposition of dyes to give higher efficiency for power conversion.


    Block copolymers (BCPs) that consist of chemically different components can self-assemble into various ordered nanostructures due to the incompatibility of constituted blocks. Among them, double gyroid (DG) phase with three-dimensional (3D) and bi-continuous networks is one of the appealing morphologies for practical applications due to its unique texture. In this study, we aim to take advantage of the degradable character of ester groups in polylactide-containing BCPs to create nanoporous polymeric materials with DG-forming nanochannels by hydrolysis of polylactide block in polystyrene-block-poly(L-lactide) PS-PLLA block copolymer. Subsequently, the nanoporous polymer can be served as a template for templated atomic layer deposition (ALD). Consequently, a variety of well-defined polymer/metal oxide nanohybrids can be fabricated. To acquire large-area, well-oriented nanostructured thin films from the self-assembly of the PS-PLLA, dip-coating is used in this study because of its low-cost and waste-free process. The thickness and morphologies of the coated film can be precisely controlled via this approach, giving well-ordered gyroid-forming bulk films with micrometer thickness. Consequently, templated ALD is carried out by using nanoporous PS from hydrolyzed PS-PLLA as a template to fabricate PS/ZnO DG nanohybrids. Unlike 1D structure, the 3D bi-continuous networks which have more complex interconnected channels require an optimization of processing parameters for ALD such as exposure time to the precursor gases, precursor partial pressure and deposition temperature. With the appropriate control of those factors, the gyroid-forming metal oxides can be successfully fabricated.
    Although well-defined nanohybrids can be synthesized via templated sol-gel reaction, electrochemical deposition, and electroless plating, it is difficult to control the reaction process to form complex morphologies, such as nanotubes with tunable thickness. As demonstrated in this study, micrometer-thick nanoporous DG ZnO with high porosity and high specific surface area can be successfully fabricated after calcination. Owing to the easy diffusion ability for pore-filling process, the templated ALD is very appealing for the fabrication of nanotubes with tunable thickness through the control of the number of ALD cycles. Moreover, there are many available recipes for the deposition of various metal oxides. As a result, alternating reaction process can be carried out for the formation of more complex morphologies, in particular core-shell morphologies. For instance, with the alternating ALD process with different precursors, ZnO@Al2O3 core-shell metal oxide alloys in PS matrix with DG-forming morphology can be obtained. For applications, nanoporous gyroid ZnO can be acquired after removal of PS template for fabricated PS/ZnO nanohybrids. One of the straightforward applications is the manufacture of a dye-sensitized solar cell (DSSC). As demonstrated in this study, the unique texture of the gyroid-forming nanoporous ZnO provides a good framework for the deposition of dyes to give higher efficiency for power conversion.

    Contents Abstract I Contents III List of Tables V List of Figures VI Chapter 1 Introduction 1 1.1 Top-down and Button-up Approaches for Nanomaterials ….1 1.2 Nanoporous Materials 3 1.2.1 Nanoporous Polymers 3 1.2.2 Nanoporous Metal Oxides 11 1.3 Self Assembly of Block Copolymers 16 1.3.1 Formation of Gyroid Phase 18 1.4 Nanoreactors for Templating 23 1.4.1 Templated Sol-gel Reaction 23 1.4.2 Templated Electroplating 27 1.4.3 Templated Electroless Plating 32 1.4.4 Templated Atomic Layer Deposition ...37 Chapter 2 Objectives 45 Chapter 3 Experimental Details 47 3.1 Synthesis of PS-PLLA BCPs* 47 3.2 Sample Preparation 50 3.2.1 Nanoporous PS templates Bulk Film 50 3.2.2 Templated Atomic Layer Deposition 51 3.2.3 Nanoporous Gyroid-forming ZnO 51 3.3 Instruments 52 Chapter 4 Results and Discussion 54 4.1 Nanoporous Gyroid-forming Bulk Films 54 4.1.1 BCP Bulk-Film Formation by Dip-Coating Method 55 4.1.2 Gyroid-Forming Bulk Films by Solvent Annealing 58 4.1.3 Nanoporous Gyroid-forming Bulk Films by Hydrolysis of PLLA 60 4.2 Nanoporous Gyroid ZnO from Templated ALD 63 4.2.1 Templated Atomic Layer Deposition 64 4.2.2 Controlled Crystallization of ZnO by Calcination 65 4.2.3 Deposition Temperature Selection and Effect of Exposure Time on Tempalted synthesis 69 4.2.4 Effect of Cycle Number on Templated Synthesis 72 4.3 Nanoporous Core-Shell Metal Oxide Alloy from Alternating ALD Processes 75 4.3.1 ZnO@ Al2O3 Core-Shell Metal Oxide Alloys 76 4.4 Nanoporous Gyroid ZnO for Dye-sensitized Solar Cells 82 Chapter 5 Conclusion 87 Chapter 6 References 89

    1. Cao, G. Nanostructures & Nanomaterials: Synthesis, Properties & Applications, Imperial College Press, London, 2004.
    2. Das, B.; Subramanium, S.; Melloch, M. R. Semicond. Sci. Technol 1993, 8, 1347.
    3. Whitesides, G. M.; Grzybowski, B. Science 2002, 295, 2418.
    4. Prockop, D. J.; Fertala, A. J. Struct. Biol. 1998, 122, 111.
    5. Mueller, A.; O'Brien, D. F. Chem. Rev. 2002, 102, 727.
    6. Wang, Y.; He, C. C.; Xing, W. H.; Li, F. B.; Tong, L.; Chen, Z. Q.; Liao, X. Z.; Steinhart, M. Adv. Mater. 2010, 22, 2068.
    7. Ho, R.-M.; Chiang, Y.-W.; Tsai, C.-C.; Lin, C.-C.; Ko, B.-T.; Huang, B.-H. J. Am. Chem. Soc. 2004, 126, 2704.
    8. (a) Zalusky, A. S.; Olayo-Valles, R.; Taylor, C. J.; Hillmyer, M. A. J. Am. Chem. Soc. 2001, 123, 1519. (b) Zalusky, A. S.; Olayo-Valles, R.; Wolf, J. H.; Hillmyer, M. A. J. Am. Chem. Soc. 2002, 124, 12761.
    9. Mansky, M.; Harrison, C. K.; Chaikin, P. M.; Register, R. A.; Yao, N. Appl. Phys. Lett. 1996, 68, 2586.
    10. Guo, F.; Andreasen, J. W.; Vigild, M. E.; Ndoni, S. Macromolecules 2007, 40, 3669.
    11. Park, M.; Harrison, C.; Chaikin, P. M.; Register, R. A.; Adamson, D. H.; Science 1997, 276, 1401.
    12. Thurn-Albrecht, T.; Schotter, J.; Kastle, G. A.; Emley, N.; Shibauchi, T.; Krusin-Elbaum, L.; Guarini, K.; Black, C. T.; Tuominen, M. T.; Russell, T. P. Science 2000, 290, 2126.
    13. Ho, R. M.; Tseng, W. H.; Fan, H. W.; Chiang, Y. W.; Lin, C. C.; Ko, B, T,; Huang, B. H. Polymer 2005, 46, 9362.
    14. Sanchez, C.; Ribot, F. New J. Chem. 1994, 18, 1007.
    15. Pekala, R. W. J. Mater. Sci. 1989, 24. 3221. (b) Vancher, R.; Woignier, T.; Pelous, J.; Courtens, E. Phys. Rev. B, 1988, 37. 6500.
    16. Morris, C. A.; Anderson, M. L.; Stroud, R. M.; Merzbacher, C. I.; Rolison, D. R. Science 1999, 284, 622.
    17. Sanchez, C.; Boissiere, C.; Grosso, D.; Laberty, C.; Nicole, L. Chem. Mater. 2008, 20. 682.
    18. Branton, P. J.; Hall, P. G.; Sing, K. S. W.; Reichert, H.; Schuth, F.; Unger, K. K. J. Chem. Soc. Faraday Trans. 1994, 90, 2965.
    19. Bates, F. S.; Fredrickson, G. H. Phys Today 1999, 52, 32.
    20. Martin-Moreno, L.; Garcia-Vidal, F. J.; Somoza, A. M. Phys. Rev. Lett. 1999, 83, 73. (b) Milhaupt, J. M.; Lodge, T. P. J. Polym. Sci. Part B: Polym. Phys. 2001, 39, 843. (c) Adachi, M.; Okumura, A.; Sivaniah, E.; Hashimoto, T. Macromolecules 2006, 39, 6352.
    21. Hajduk, D. A.; Takenouchi, H.; Hillmyer, M. A.; Bates, F. S.; Vigild, M. E.; Almdal, K. Macromolecules 1997, 30, 3788. (b) Hajduk, D. A.; Ho, R.-M.; Hillmyer, M. A.; Bates, F. S.; Almdal, K. J. Phys. Chem. B 1998, 102, 1356.
    22. Jinnai, H.; Hasegawa, H.; Nishikawa, Y.; Sevink, G. J. A.; Braunfeld, M. B.; Agard, D. A.; Spontak, R. J. Macromol. Rapid Commun. 2006, 27, 1424.
    23. (a) Schulz, M. F.; Bates, F. S.; Almdal, K.; Mortensen, K. Phys. Rev. Lett. 1994, 73, 86. (b) Forster, S.; Khandpur, A. K.; Zhao, J.; Bates, F. S.; Hamley, I. W.; Ryan, A. J.; Bras, W. Macromolecules 1994, 27, 6922. (c) Wang, C. Y.; Lodge, T. P. Macromolecules 2002, 35, 6997. (d) Wang, C. Y.; Lodge, T. P. Macromol. Rapid Commun. 2002, 23, 49.
    24. (a) Sakurai, S.; Umeda, H.; Furukawa, C.; Irie, H.; Nomura, S.; Lee, H. H.; Kim, J. K. J. Chem. Phys. 1998, 108, 4333. (b) Hamley, I. W.; Fairclough, J. P. A.; Ryan, A. J.; Mai, S.-M.; Booth, C. Phys. Chem. Chem. Phys. 1999, 1, 2097.
    25. Alward, D. B.; Kinning, D. J.; Thomas, E. L.; Fetters, L. J. Macromolecules 1986, 19, 215.
    26. Hasegawa, H.; Tanaka, H.; Yamasaki, K.; Hashimoto, T. Macromolecules 1987, 20, 1651.
    27. Anderson, D. M.; Thomas, E. L. Macromolecules 1988, 21, 3221.
    28. Luzzati, V.; Spegt, P. A. Nature 1967, 215, 701.
    29. Schoen, A. H. NASA TN D-5541, 1970.
    30. Hajduk, D. A.; Harper, P. E.; Gruner, S. M.; Honeker, C. C.; Kim, G.; Thomas, E. L.; Fetters, L. J. Macromolecules 1994, 27, 4063.
    31. Schulz, M. F.; Bates, F. S.; Almdal, K.; Mortensen, K. Phys. Rev. Lett. 1994, 73, 86.
    32. Matsen, M. W.; Schick, M. Phys. Rev. Lett. 1994, 72, 2660.
    33. Hench, L. L.; West, J. K. Chem. Rev. 1990, 90, 33.
    34. Pierre, A. C. Introduction to Sol-gel Processing; Kluwer Academic: Boston, 1998.
    35. Schotter, C.J.; Kastle, N.; Emley, T.; Russell, T. P. Science. 2000, 290, 2126.
    36. Crossland, J. W.; Kamperman, M; Wiesner, U. Nano Lett. 2009, 9, 2807.
    37. Scherer, M. R.; Cunha, M.S.; Steiner, U. Adv. Mater.2012, 24, 1217.
    38. Scherer, M. R.; Steiner, U. Nano Lett. 2013, 13, 3005.
    39. Wei, D.; Scherer, M. R.; Andrew, P. T.Nano Lett. 2012, 12, 1857.
    40. Crossland, E. J. W.; Hillmyer, M.A.; Steiner, U. Soft Matter. 2010, 6, 670.
    41. Vignolini, S.; Yufa, N. A.; Wiesner, U.; Steiner, U.Adv. Mater.2011, 24, 23.
    42. Vukovic, S.; Punzhin, Z.; Vukovic, P. ACS Nano. 2010, 4, 1913.
    43. Polushkin, E.; Hiekkataipale, P.; Ruokolainen, J. K. Rapid Commun. 2011, 32, 366.
    44. Hsueh, H.-Y.; Ho, R.-M.; Hasegawa, H. Adv. Mater. 2011, 23, 3041.
    45. Hsueh, H.-Y.; Ho, R.-M.; Hung, Y.-C. Ling. Adv. Mater. 2013, 25, 1780.
    46. Detsi, E.; De Jong, E.; Zinchenko, A.; Vuković, Z.; Vukovic, I.; Punzhin, S.; Loos, K.; Brinke, G. ten; De Raedt, H.A.; Onck, P.R.; De Hosson, J.T.M. Acta Materialia 2011, 59, 7488.
    47. Chen, J.-T.; Shin, K.; Leiston-Belanger, J. M.; Zhang, M.; Russell, T. P. Adv. Func. Mater. 2006, 16, 1476–1480.
    48. Lo, K.-H.; Tseng, W.-H.; Ho, R.-M. Macromolecule 2007, 40, 2621.
    49. Tseng, W.-H.; Chen, C.-K.; Chiang, Y.-W.; Ho, R.-M.; Akasaka, S.; Hasegawa, H. J. Am. Chem. Soc. 2009, 131, 1356.
    50. International Technology Roadmap for Semiconductors, 2007 Edition,
    51. Gupta, P.; Coon, P. A.; Koehler, B. G.; George, S. M. Surf. Sci 1991 249, 92.
    52. Sneh, O.; Clark-Phelps, R. B.; Londergan, A. R.; Winkler, J.; Seidel,T. E. Thin Solid Films 2002, 402, 248.
    53. Grosso, D. J. Mater. Chem. 2011, 21, 1733.
    54. Kim, E.; Yana, V.; Alessandro, S.; Steiner, U. Adv. Funct. Mater. 2014,24,863.
    55. Bagnall, D. M.; Boreland, M. Energ. Pol. 2008, 36, 4390.
    56. Green, M. A. Sol. Energ. 2004, 76, 3.
    57. Oliver, M.; Jackson, T. Energ. Pol. 1999, 27, 371.
    58. Chapin, M.; Fuller, C. J. Appl. Phys. 1954, 25, 676.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE