研究生: |
鄭子彥 Cheng, Tzu-Yen |
---|---|
論文名稱: |
自旋極化掃描穿隧式顯微鏡研究原子尺度下雙層Mn/Ag(111)的複雜磁性結構 Atomic-Scale Complex Magnetic Order of Bilayer Mn/Ag(111) Revealed by Spin-Polarized Scanning Tunneling Microscopy |
指導教授: |
徐斌睿
Hsu, Pin-Jui |
口試委員: |
李尚凡
Lee, Shang-Fan 王柏堯 Wang, Bo-Yao |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 55 |
中文關鍵詞: | 自旋極化穿隧掃描顯微鏡 、120度反鐵磁結構 、非線性磁性結構 、自旋螺旋 |
外文關鍵詞: | Spin-Polarized Scanning Tunneling Microscopy, 120° Néel Structure, Non-collinear Magnetic Order, Spin Spiral |
相關次數: | 點閱:63 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年在自旋電子領域中非線性磁性結構為熱門研究議題,具備成為新一代磁存儲與自旋傳輸元件的潛力。在低維度的磁性材料薄膜系統通常具備此種特殊磁性結構,在本次研究雙層錳成長在Ag(111)系統中,發現在二層錳具有兩種不同種類的非線性磁性結構,並且此種磁性結構差異可以由二層錳成長在單層錳上的原子結構差異區分。透過掃描穿隧式顯微鏡(Scanning Tunneling Spectroscopy, STM)量測,二層錳在單層錳上具有呈假晶(pseudomorphic)成長的DLS-Mn與因材料表面應變釋放(strain relief)形成具有週期性重構結構(reconstructed structure)的DLR-Mn兩種原子結構。
經由自旋極化掃描穿隧式顯微鏡(Spin-polarized STM, SP-STM)進行表面磁性結構量測,在單層錳成長在Ag(111)具有先前研究發現的特殊非線性結構,120° Néel State [1],在此磁性結構中的自旋方向皆為in-plane方向,運用此種自旋結構,我們可以解析探針自旋極化方向在in-plane方向角度的變化,經由分析一、二層錳在使用不同自旋極化方向探針的自旋圖紋(spin texture)差異,與進行SP-STM模擬檢驗,我們最終發現此系統磁性結構由海森堡交換耦合作用力(Heisenberg exchange interaction) 主導,在DLR-Mn形成spin spiral state,而在DLS -Mn形成spin spiral state與反鐵磁結構組成的特殊磁性結構,conical spin spiral state。
In recent years, nonlinear magnetic structures have been a popular research topic in the field of spintronics, showing potential for being utilized in next-generation magnetic storage and spin transport devices. Such unique magnetic structures are often observed in low-dimensional magnetic thin film systems.In this study, it was discovered that bilayer Mn grown on the Ag(111) system exhibits two distinct types of non-colinear magnetic structures, and these differences in magnetic structure can be distinguished by the atomic structure of the bilayer Mn grown on monolayer Mn. Through scanning tunneling microscopy (STM) measurements, it was observed that the bilayer Mn on monolayer Mn exhibits two atomic structures: DLS-Mn, which grows in a pseudomorphic manner, and DLR-Mn, which forms a periodically reconstructed structure due to material surface strain relaxation.
By analyzing the magnetic structures using spin-polarized STM, it was found that the monolayer Mn grown on Ag(111) exhibits a previously discovered special non-colinear structure, the 120° Néel state [1], in which the spin orientation are all in-plane. By utilizing this spin structure, the variations in the probe spin polarization direction in the in-plane direction were analyzed. By comparing the spin patterns obtained with probes of different spin polarization directions and performing SP-STM simulations, it was ultimately discovered that the magnetic structure in this system is governed by Heisenberg exchange interactions. In DLR-Mn, a spin spiral state is formed, while in DLS-Mn, a unique magnetic structure consisting of a spin spiral state and antiferromagnetic structure is formed, known as a conical spin spiral state.
[1] C. L. Gao, W. Wulfhekel, and J. Kirschner. Revealing the 120◦ antiferromagnetic Néel structure in real space: One monolayer Mn on Ag(111). Phys. Rev. Lett., 101(26):267205, 12 (2008).
[2] R. Wiesendanger, H.-J. Güntherodt, G. Güntherodt, R. J. Gambino, and R. Ruf. Observation of vacuum tunneling of spin-polarized electrons with the scanning tunneling microscope. Phys. Rev. Lett., 65(2):247, 7 (1990).
[3] Jonas Spethmann, Sebastian Meyer, Kirsten Von Bergmann, Roland Wiesendanger, Stefan Heinze, and André Kubetzka. Discovery of Magnetic Single- And Triple- q States in Mn/Re (0001). Phys. Rev. Lett., 124(22):227203, 6 (2020).
[4] Reiner Brüning, André Kubetzka, Kirsten Von Bergmann, Elena Y. Vedmedenko, and Roland Wiesendanger. Nanoscale skyrmions on a square atomic lattice. Phys. Rev. B, 105(24):L241401, 6 (2022).
[5] P. Ferriani, K. Von Bergmann, E. Y. Vedmedenko, S. Heinze, M. Bode, M. Heide, G. Bihlmayer, S. Blügel, and R. Wiesendanger. Atomic-scale Spin spiral with a unique rotational sense: Mn monolayer on W(001). Phys. Rev. Lett., 101(2):027201, 7 (2008).
[6] M. Bode, M. Heide, K. Von Bergmann, P. Ferriani, S. Heinze, G. Bihlmayer, A. Kubetzka, O. Pietzsch, S. Blügel, and R. Wiesendanger. Chiral magnetic order at surfaces driven by inversion asymmetry. Nature, 447(7141):190–193, 5 (2007).
[7] Masahiro Haze, Yasuo Yoshida, and Yukio Hasegawa. Experimental verification of the rotational type of chiral spin spiral structures by spin-polarized scanning tunneling microscopy. Sci Rep, 7(1):1–5, 10 (2017).
[8] Y. Yoshida, S. Schrder, P. Ferriani, D. Serrate, A. Kubetzka, K. Von Bergmann, S. Heinze, and R. Wiesendanger. Conical spin-spiral state in an ultrathin film driven by higher-order spin interactions. Phys. Rev. Lett., 108(8):087205, 2 (2012).
[9] Tôru Moriya. Anisotropic Superexchange Interaction and Weak Ferromagnetism. Phys. Rev., 120(1):91, 10 (1960).
[10] L. Schmidt, J. Hagemeister, P. J. Hsu, A. Kubetzka, K. Von Bergmann, and R. Wiesendanger. Symmetry breaking in spin spirals and skyrmions by in-plane and canted magnetic fields. New J. Phys., 18(7):075007, 7 (2016).
[11] Maokang Shen, Xiangyu Li, Yue Zhang, Xiaofei Yang, and Shi Chen. Effects of the interfacial Dzyaloshinskii–Moriya interaction on magnetic dynamics. J. Phys. D: Appl. Phys., 55(21):213002, 2 (2022).
[12] Kirsten Von Bergmann, André Kubetzka, Oswald Pietzsch, and Roland Wiesendanger. Interface-induced chiral domain walls, spin spirals and skyrmions revealed by spin-polarized scanning tunneling microscopy. J. Phys.: Condens. Matter, 26(39):394002, 9 (2014).
[13] S. Heinze, P. Kurz, D. Wortmann, G. Bihlmayer, and S. Blügel. Complex magnetism in ultra-thin films: Atomic-scale spin structures and resolution by the spin-polarized scanning tunneling microscope. Appl Phys A, 75(1):25–36, 7 (2002).
[14] B. Hardrat, A. Al-Zubi, P. Ferriani, S. Blügel, G. Bihlmayer, and S. Heinze. Complex magnetism of iron monolayers on hexagonal transition metal surfaces from first principles. Phys. Rev. B, 79(9):094411, 3 (2009).
[15] Ph Kurz, G. Bihlmayer, K. Hirai, and S. Blügel. Three-Dimensional Spin Structure on a Two-Dimensional Lattice: Mn/Cu(111). Phys. Rev. Lett., 86(6):1106, 2 (2001).
[16] Kirsten Von Bergmann, Stefan Heinze, Matthias Bode, Gustav Bihlmayer, Stefan Blügel, and Roland Wiesendanger. Complex magnetism of the Fe monolayer on Ir(111). New J. Phys., 9(10):396, 10 (2007).
[17] Niklas Romming, Christian Hanneken, Matthias Menzel, Jessica E. Bickel, Boris Wolter, Kirsten Von Bergmann, André Kubetzka, and Roland Wiesendanger. Writing and deleting single magnetic skyrmions. Science, 341(6146):636–639, 8 (2013).
[18] Pin Jui Hsu, Aurore Finco, Lorenz Schmidt, André Kubetzka, Kirsten Von Bergmann, and Roland Wiesendanger. Guiding Spin Spirals by Local Uniaxial Strain Relief. Phys. Rev. Lett., 116(1):017201, 1 (2016).
[19] Melanie Dupé, Stefan Heinze, Jairo Sinova, and Bertrand Dupé. Stability and magnetic properties of Fe double layers on Ir (111). Phys. Rev. B, 98:224415, 12 (2018).
[20] S. H. Phark, J. A. Fischer, M. Corbetta, D. Sander, K. Nakamura, and J. Kirschner. Reduced-dimensionality-induced helimagnetism in iron nanoislands. Nat Commun, 5(1):1–7, 10 (2014).
[21] Sugen Tian, Yuanyang Zhao, Kairui Dong, Guangbin Liu, Qichao Yang, and Liansheng Li. Internal Flow and Cavitation Analysis of Scroll Oil Pump by CFD Method. Processes, 9(10):1705, 9 (2021).
[22] Charles A. Bishop. Pumping. Vacuum Deposition onto Webs, Films and Foils, pages 63–80, 1 (2011).
[23] James A. Fedchak, Patrick J. Abbott, Jay H. Hendricks, Paul C. Arnold, and Neil T. Peacock. Review Article: Recommended practice for calibrating vacuum gauges of the ionization type. J. Vac. Sci. Technol. A., 36(3):030802, 5 (2018).
[24] A.Y. Cho and J.R. Arthur. Molecular beam epitaxy. Progress in Solid State Chemistry, 10(PART 3):157–191, 1 (1975).
[25] J. Tersoff and D. R. Hamann. Theory and Application for the Scanning Tunneling Microscope. Phys. Rev. Lett., 50(25):1998, 6 (1983).
[26] Barry E Murphy. The physico-chemical properties of fullerenes and porphyrin derivatives deposited on conducting surfaces. Technical report, (2014).
[27] Bai An, Lin Zhang, Seiji Fukuyama, and Kiyoshi Yokogawa. Growth and structural transition of Fe ultrathin films on Ni(111) investigated by LEED and STM. Phys. Rev. B, 79(8):085406, 2 (2009).
[28] E. Bauer and Jan H. Van Der Merwe. Structure and growth of crystalline superlattices: From monolayer to superlattice. Phys. Rev. B, 33(6):3657, 3 (1986).