簡易檢索 / 詳目顯示

研究生: 鄭敏柔
Cheng, Min-Rou
論文名稱: Halcyon 環形加速器與TrueBeam 直線加速器在食道癌強度調控放射治療與弧形調控放射治療治療計畫的劑量學比較分析
Comparative dosimetric analysis of IMRT and VMAT based esophageal cancer treatment plans between Halcyon ring gantry and TrueBeam linear accelerator
指導教授: 許靖涵
Hsu, Ching-Han
口試委員: 賴律翰
Lai, Lu-Han
蕭文田
Hsiao, Wen-Tien
林信宏
Lin, Hsin-Hon
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 183
中文關鍵詞: HalcyonTrueBeam食道癌治療計畫放射治療
外文關鍵詞: TrueBeam
相關次數: 點閱:62下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以食道癌為研究對象,選擇尖端放射治療新式儀器Halcyon環形加速器與TrueBeam傳統直線加速器兩種放射治療儀器進行食道癌治療計畫之劑量學比較分析。觀察Halcyon是否可以符合與TrueBeam達到相同治療計畫執行臨床指標,甚至是更好的治療計畫設計成效。本研究使用強度調控放射治療技術(IMRT)及弧形調控放射治療技術(VMAT)進行治療計畫設計,處方劑量條件設定為40Gy/20fx及45Gy/20fx,並評估患部食道計畫靶體積(Planning Target Volume, PTV)及危及器官(Organ At Risk, OAR)之輻射劑量數值。計畫靶體積(Planning Target Volume, PTV)包含評估D 2%、D 98% 、順形性指標(Conformity Index, CI)、均勻性指標(Homogeneity Index, HI)、梯度指數(Gradient index,GI)和劑量體積直方圖(Dose Volume Histogram, DVH);危及器官(Organ At Risk, OAR)包含評估心臟(Heart)的V20%、V30% 、V40%以及Dmean、肝(Liver)的V20%、V30% 、V40%以及Dmean、肺(Lung)的V20%、V30% 、V40%以及Dmean和脊髓(Spinal cord)的V20%、V30% 、V40%以及Dmean,亦會比較危急器官劑量體積直方圖(Dose Volume Histogram, DVH)之差異。最後為了確保治療計畫的品質準確性,使用Delta4 Phantom+測量進行治療計畫品質驗證。研究結果顯示,四種治療方法對於PTV的腫瘤包覆率皆有蠻好的效果,但儘管如此在Halcyon搭配VMAT治療技術結果中得出腫瘤位置所累積之劑量皆有不足的問題,因此腫瘤包覆率好不一定代表腫瘤能得到足夠劑量或達到治療效果。接著四種治療方式對於危及器官的保護效果,先撇除VMAT治療技術的兩種方式,由於他們的腫瘤位置劑量不足,所以危及器官保護力不具參考價值外,TrueBeam與Halcyon相比,TrueBeam的危及器官保護力是比Halcyon來的好一些的,但整體而言依舊不是非常理想。最後綜合實驗結果比較分析後食道癌治療效果最佳的方式是採用TrueBeam,雖說Halcyon有非常完善的硬體及軟體設備,對於食道癌而言Halcyon並沒有達到劑量學上的優勢,不論是使用IMRT技術或是VMAT技術皆無法達成理想目標。


    This study provides various treatment methods for esophageal cancer, aiming to compare the quality of treatment plans between two new radiotherapy instruments, Halcyon and TrueBeam. The study examines whether Halcyon can achieve comparable or even better therapeutic effects than TrueBeam. The evaluation is conducted under prescribed doses of 40Gy/20fx and 45Gy/20fx to assess the radiation dose values for the planned target volume (PTV) and organs at risk (OAR) of the affected esophagus. For the PTV, parameters such as D2%, D98%, compliance index (CI), homogeneity index (HI), gradient index (GI), and dose volume histogram (DVH) will be evaluated. For the OAR, parameters including V20%, V30%, V40%, and Dmean of the heart, liver, lung, and spinal cord will be assessed. Critical organ dose volume histograms (DVH) will also be compared. To ensure the quality and accuracy of the treatment plan, quality assurance will be conducted using Delta4 Phantom+ measurements to verify the treatment plan. The study's results show that all four treatment methods have positive effects on the tumor coverage rate of PTV. However, the combination of Halcyon with VMAT treatment technology reveals insufficient cumulative dose at the tumor location, indicating that a good tumor coverage rate may not guarantee sufficient dose for effective treatment. Next, the study analyzes the protective effects of the four treatment modalities on organs at risk. Among the VMAT treatment methods, the protection of organs at risk is not satisfactory due to the insufficient dose at the tumor location. Comparing TrueBeam to Halcyon, TrueBeam demonstrates better organ-at-risk protection. However, overall, the level of protection is still not ideal. After comprehensive comparison and analysis of the experimental results, it is concluded that the most effective way to treat esophageal cancer is by using TrueBeam. Despite Halcyon having advanced hardware and software equipment, it does not provide dosimetric advantages for esophageal cancer, regardless of whether IMRT or VMAT technology is employed, as neither technology achieves the desired treatment goal.

    目錄 摘要…………………………………………………………………………………….i ABSTRACT.………………………………………………………………………….iii 致謝…………………………………………………………………………………....v 目錄…………………………………………………………………………...….…...vi 表目錄……………………………………………………………………………….viii 圖目錄………………………………………………………………………….……..xi 第一章 緒論……………………………………………………..………………..1 1.1 研究緣起…………………………………………………………………..…...1 1.2 研究目的與動機……………………………………………………………….2 1.3 研究架構……………………………………………………………………….4 第二章 文獻回顧…………………………….…………………………………...5 2.1食道癌…………….…………………………………………………………….5 2.2靶體積定義……………………………………………………………………..5 2.3食道癌放射治療流程…………………………………………………………..7 2.4食道癌放射治療後副作…………………………...………………………...…7 2.5放射治療食道癌-劑量限值……………..……………………….......….……...8 2.6分析各向異性算法與Acuros XB之差異………………………………………9 2.7光子優化器及漸進分辨率優化器之差異…………………………………..…9 2.8 Delta4 Phantom+………………………………………………………………10 第三章 材料與方法………….………………………………………………….11 3.1 實驗設備………….…………………………………………………………..11 3.1.1 TrueBeam…………………..…………………………………………..11 3.1.2 Halcyon…………….………………………………………………...…12 3.1.3治療計畫系統……………..………..………………………………….14 3.1.4分析各向異性算法…………………………………………….………15 3.1.5光子優化器…………………………………………..………..……….15 3.1.6 Delta4 Phantom+.………………………………………………………16 3.2 實驗方法……………………………………………………………………...17 3.2.1病人選擇………………………………………………………………...17 3.2.2原治療計畫導入治療計畫系統………………………………………...18 3.2.3 TrueBeam治療計畫設計…………………………………………..........43 3.2.4 Halcyon治療計畫設計……………………………………….................47 3.2.5 Delta4 Phantom+治療計畫品質驗證…………………………...………61 3.2.6TrueBeam和Halcyon參數比較………………………………………...64 第四章 結果與討論……………………………………………………………..66 4.1 TrueBeam治療食道癌之治療計畫結果……………..………………………66 4.2 Halcyon治療食道癌之臨床目標運算結果….……….………………………84 4.3 TrueBeam和Halcyon目標覆蓋率指標和OAR劑量比較.…………………138 4.4 TrueBeam和Halcyon治療計畫之PTV之DVH圖之比較..………………..158 4.5 TrueBeam和Halcyon治療計畫之OAR之DVH圖之比較.………………165 4.6 Delta4 Pantom+驗證治療計畫品質之結果…………………………………174 第五章 結論…………………………………………………………………... 175 參考文獻…………………………………...…………………………………….…179

    1.HR, Eric P. Widmaier, and Kevin T. Strang. "Vander's Human
    Physiology." (2014).
    2.癌症新探67期¬-食道癌放射線治療簡介
    3.Khan, F. M., & Gibbons, J. P. (2014). Khan's the physics of
    radiation therapy. Lippincott Williams & Wilkins.
    4.Li, Taoran, et al. "Impact of multi-leaf collimator parameters on
    head and neck plan quality and delivery: a comparison between
    halcyon™ and truebeam® treatment delivery systems." Cureus 10.11
    (2018).
    5.Li, Chengqiang, et al. "Plan quality comparison for cervical
    carcinoma treated with Halcyon and Trilogy intensity-modulated
    radiotherapy." Journal of Cancer 10.24 (2019): 6135.
    6.Napier, Kyle J., Mary Scheerer, and Subhasis Misra. "Esophageal
    cancer: A Review of epidemiology, pathogenesis, staging workup and
    treatment modalities." World journal of gastrointestinal oncology
    6.5 (2014): 112.
    7.Holmes, Rebecca S., and Thomas L. Vaughan. "Epidemiology and
    pathogenesis of esophageal cancer." Seminars in radiation oncology.
    Vol. 17. No. 1. WB Saunders, 2007.
    8.Kato, Hiroyuki, and Masanobu Nakajima. "Treatments for esophageal
    cancer: a review." General thoracic and cardiovascular surgery 61
    (2013): 330-335.
    9.Huang, Fang-Liang, and Sheng-Jie Yu. "Esophageal cancer: risk
    factors, genetic association, and treatment." Asian journal of
    surgery 41.3 (2018): 210-215.
    10.Wambersie, André. "ICRU report 62, prescribing, recording and
    reporting photon beam therapy (supplement to ICRU Report 50)." Icru
    News (1999).
    11.沈佳韋醫師-食道癌的放射線治療整理
    12.照護線上-沉默殺手:食道癌
    13.Safran, Howard, et al. "Trastuzumab with trimodality treatment for
    esophageal adenocarcinoma with HER2 overexpression: NRG
    Oncology/RTOG 1010." (2020): 4500-4500.
    14.Mbewe, Jonathan, and Sakhele Shiba. "HalcyonTM Acuros XB vs AAA: A
    RapidArc Planning Comparison for Head & Neck Cancers."
    International Journal of Medical Physics, Clinical Engineering and
    Radiation Oncology 11.4 (2022): 189-199.
    15.Rana, Suresh. "Clinical dosimetric impact of Acuros XB and
    analytical anisotropic algorithm (AAA) on real lung cancer
    treatment plans." International Journal of Cancer Therapy and
    Oncology 2.1 (2014).
    16.Sanford, Lana, and Damodar Pokhrel. "Improving treatment efficiency
    via photon optimizer (PO) MLC algorithm for synchronous single‐
    isocenter/multiple‐lesions VMAT lung SBRT." Journal of Applied
    Clinical Medical Physics 20.10 (2019): 201-207.
    17.Binny, Diana, et al. "Photon optimizer (PO) vs progressive
    resolution optimizer (PRO): a conformality-and complexity-based
    comparison for intensity-modulated arc therapy plans." Medical
    Dosimetry 43.3 (2018): 267-275.
    18.Rojas-López, José Alejandro, and Daniel Venencia. "Importance of
    Beam-Matching between TrueBeam STx and Novalis Tx in Pre-treatment
    quality assurance using portal dosimetry." Journal of Medical
    Physics 46.3 (2021): 211.
    19.Sadagopan, Ramaswamy, et al. "Characterization and clinical
    evaluation of a novel IMRT quality assurance system." Journal of
    Applied Clinical Medical Physics 10.2 (2009): 104-119.
    20.Sun, Baozhou, et al. "Initial experience with TrueBeam trajectory
    log files for radiation therapy delivery verification." Practical
    radiation oncology 3.4 (2013): e199-e208.
    21.Glide‐Hurst, C., et al. "Commissioning of the Varian TrueBeam
    linear accelerator: a multi‐institutional study." Medical physics
    40.3 (2013): 031719.
    22.Pokhrel, Damodar, et al. "Feasibility of using ring‐mounted Halcyon
    Linac for single‐isocenter/two‐lesion lung stereotactic body
    radiation therapy." Journal of Applied Clinical Medical Physics
    23.5 (2022): e13555.
    23.Pokhrel, Damodar, et al. "Prostate SBRT using O‐Ring Halcyon Linac—
    Plan quality, delivery efficiency, and accuracy." Journal of
    Applied Clinical Medical Physics 22.1 (2021): 68-75.
    24.Petroccia, Heather M., et al. "Spine SBRT with Halcyon™: plan
    quality, modulation complexity, delivery accuracy, and speed."
    Frontiers in Oncology 9 (2019): 319.
    25.Li, Taoran, et al. "Impact of multi-leaf collimator parameters on
    head and neck plan quality and delivery: a comparison between
    halcyon™ and truebeam® treatment delivery systems." Cureus 10.11
    (2018).
    26.Varian瓦里安官方平台
    27.Van Esch, Ann, et al. "Testing of the analytical anisotropic
    algorithm for photon dose calculation." Medical physics 33.11
    (2006): 4130-4148.
    28.Sanford, Lana, and Damodar Pokhrel. "Improving treatment efficiency
    via photon optimizer (PO) MLC algorithm for synchronous single‐
    isocenter/multiple‐lesions VMAT lung SBRT." Journal of Applied
    Clinical Medical Physics 20.10 (2019): 201-207.
    29.Geurts, M., J. Gonzalez, and P. Serrano‐Ojeda. "Longitudinal study
    using a diode phantom for helical tomotherapy IMRT QA." Medical
    physics 36.11 (2009): 4977-4983.
    30.Bedford, James L., et al. "Evaluation of the Delta4 phantom for
    IMRT and VMAT verification." Physics in Medicine & Biology 54.9
    (2009): N167.

    QR CODE