簡易檢索 / 詳目顯示

研究生: 辛坤瑩
論文名稱: 從優直徑單壁奈米碳管成長之研究
Study of Preferred Diameter Single-Walled Carbon Nanotube Growth
指導教授: 蔡春鴻
Chuen-horng Tsai
口試委員:
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2008
畢業學年度: 96
語文別: 英文
中文關鍵詞: 奈米碳管
外文關鍵詞: carbon nanotube
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 單壁奈米碳管是由僅一層石墨層捲曲成中空圓柱狀,兩端分別由似C60的半球結構組合而成的一維結構材料(1-Dimension Material)。單壁奈米碳管會隨著石墨層捲曲的方向(稱為螺旋性)變化而改變其結構與直徑,此改變將影響其能帶結構使之呈現金屬性或半導體性的電氣特性。為了與奈米碳管電性有關之各種元件(至少包含電子、光電及生醫元件)的應用,單壁奈米碳管的臨場成長與直徑控制儼然已成為目前研究團隊爭相研究的目標。在以元件應用及臨場成長的考量之下,我們選擇利用催化裂解化學氣相沈積法搭配金屬多層催化劑系統,生長高品質的單壁奈米碳管。經由對單壁奈米碳管生長機制與催化劑系統中各元素功能的瞭解,我們發現不同主催化劑(Fe、Co、Ni)的材料特性差異,對單壁奈米碳管生長具有關鍵性的影響。以金屬多層催化劑系統而言,利用我們最佳化的催化系統參數Mo(0.2 nm)/Fe(1 nm)/Al(15 nm)/SiO2(100 nm)搭配甲烷碳源氣體,可以合成幾乎無雜質、結晶性佳(拉曼光譜G/D比超過55)的單壁奈米碳管。利用上述研究結果,我們進一步以藍寶石基板代替矽基板,利用基板效應(Substrate Effect)直接控制催化劑顆粒,並間接控制單壁奈米碳管的生長條件。最後,我們提出機制解釋並歸納說明從優直徑單壁奈米碳管的生長機制及其限制。並期望在本實驗室的研究努力下,將利用催化裂解化學氣相沈積法所生長的從優直徑單壁奈米碳管應用在相關元件上。


    A single-walled carbon nanotube (SWCNT) is a one-dimension material composed of graphene layer rolled up into a cylinder, with its end cap structure similar to the half of C60. SWCNT structure can be presented by their (m, n) indices, which determine SWCNT diameter and chirality. According tight-binding method calculation, SWCNT can be metallic, semiconducting or small-gap semiconducting, depending on their structure and diameters. For these SWCNT physical characteristics, the control of the diameter of SWCNT becomes the challenge of developing SWCNT-based nanoelectronic devices. In this thesis, a reliable method using chemical vapor deposition (CVD) method of growing high-purity SWCNTs was demonstrated. A high quality, almost bundle-free, SWCNTs with G/D area ratio of 55 was obtained by optimizing the catalytic system with SiO2(100 nm)/Al(15 nm)/Fe(1 nm)/Mo(0.2nm) multi-layer catalyst and the CVD growth process parameters. In addition, the sapphire wafer was utilized to be the substrate for SWCNT growth. Based on substrate effect to catalytic system, the growth of preferred diameter SWCNTs was demonstrated. Finally, we summarized these results by proposing a SWCNT growth mechanism with a growth model based on the lattice matching interaction (i.e. substrate effect to catalyst nanoparticles), the surface tension theory and the difference between surface and bulk diffusivities.

    Abstract (Chinese) i Abstract ii Acknowledgement (Chinese) iii Contents v List of Figures vii List of Tables xviii Chapter 1 Introduction of Carbon Nanotubes 1 1.1 Material Structure of Carbon Nanotubes 3 1.2 Properties of Carbon Nanotubes 5 1.2.1 Electrical Properties 5 1.2.2 Mechanical properties 7 1.2.3 Thermal properties 11 1.3 Synthesis of Carbon Nanotubes 12 1.3.1 Arc Discharge 13 1.3.2 Laser Ablation 14 1.3.3 Chemical Vapor Deposition 16 1.4 Applications of Carbon Nanotubes 17 1.4.1 Application of Electrical Properties 17 1.4.2 Application of Mechanical Properties 21 1.4.3 Application of Thermal Properties 22 1.5 Motivation 23 Chapter 2 Literature Review 24 2.1 SWCNT Growth by Using CVD 24 2.1.1 Wet Catalyst 25 2.1.2 Dry Catalyst 31 2.2 Multi-Layered Catalytic Systems to Grow SWCNTs 40 2.2.1 Iron-Based Catalytic System 40 2.2.2 Nickel-Based Catalytic System 47 2.3 SWCNT Growth Mechanism 50 2.3.1 Base- and Tip-mode Growth Mechanism 50 2.3.2 Theoretical Simulation by Molecular Dynamicsm 62 Chapter 3 Experimental Methods 65 3.1 Experimental Flow 65 3.2 Preparation of Catalysts 67 3.2.1 Wafer Cleaning 67 3.2.2 Lithography 67 3.2.3 E-Gun Evaporation 68 3.2.4 Lift-off PR 69 3.3 Carbon Nanotube Growth using CVD 70 3.4 Material Characterization 75 3.4.1 Scanning Electron Microscopy (SEM) 76 3.4.2 Transistion Electron Microscopy (TEM) 77 3.4.3 Atomic Force Microscopy (AFM)) 78 3.4.4 X-Ray Diffraction (XRD) 79 3.4.5 Auger Electron Spectroscopy (AES) 80 3.4.6 X-ray Photoelectron Spectrometer (XPS) 81 3.4.7 Micro-Raman spectroscopy (Raman) 82 3.4.8 Multi-Probe Nano-Electronics Measurement System 84 Chapter 4 SWCNT Growth by Using Chemical Vapor Deposition Technique 85 4.1 SWCNT Growth by Using Multi-Layered Catalytic Systems 86 4.1.1 Introduction 86 4.1.2 Experimental Details 88 4.1.3 Results and Discussion 89 4.1.4 Summary 95 4.2 Vertically-Aligned Growth of SWCNTs without Dielectric Support 96 4.2.1 Introduction 97 4.2.2 Experimental Details 98 4.2.3 Results and Discussion 100 4.2.4 Summery 107 Chapter 5 Preferred Diameter Growth of SWCNTs Using Sapphire Substrate 106 5.1 Introduction 109 5.2 Experimental Details 110 5.3 Results and Disscusion 112 5.4 Summery 124 Chapter 6 Conclusions 125 References 127 Appendix 135

    1 H. W. Kroto, J. R. Heath, S. C. O. Brien, R. F. Curl and R. E. Smalley. C60: Buckminsterfullerene. Nature 318, 162 (1985).
    2 R. E. Smalley. Nobel Lecture: Discovering the Fullerenes. December 7, 1996.
    3 H. W. Kroto. Nobel Lecture: Symmetry, Space, Stars and C60. December 7, 1996.
    4 M. S. Dresselhaus, G. Dresselhaus and P. C. Eklund. Science of Fullerenes and Carbon Nanotubes. Academic Press, San Diego (1996).
    5 S. Iijima. Helical Microtubules of Graphitic Carbon. Nature 354, 56 (1991).
    6 S. Iijima and T. Ichihashi. Single-Shell Carbon Nanotubes of 1-nm Diameter. Nature 363, 603 (1993).
    7 M. S. Dresselhaus, G. Dresselhaus and R. Saito. Physics of Carbon Nanotubes. Carbon 33, 883 (1995).
    8 Calculated and drawn using tight binding mode by Kun-Ying Shin.
    9 M. M. J. Treacy, T. W. Ebbessen and J. M. Gilson. Exceptionally High Young’s Modules Observed for Individual Carbon Nanotubes. Nature 381, 678 (1996).
    10 E.W. Wong, P. E. Sheehan and C. M. Lieber. Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes. Science 277, 1971 (1997).
    11 J-P Salvetat, G. Andrew D. Briggs, J-M Bonard, R. R. Bacsa, A. J. Kulik, T. Stöckli, N. A. Burnham, and L. Forró. Elastic and Shear Moduli of Single-Walled Carbon Nanotube Ropes. Phys. Rev. Lett. 82, 944 (1999).
    12 J. Hone, M. Whitney, C. Piskoti and A. Zettl. Thermal Conductivity of Single-Walled Carbon Nanotubes. Phys. Rev. B 59, R2514 (1999).
    13 J. Che, T. Cagin and W. A Goddard III. Thermal Conductivity of Carbon Nanotubes. Nanotechnology 11, 65 (2000).
    14 Y. Ando, Xinluo Zhao, T. Sugai and M. Kumar. Growing Carbon Nanotubes. Materials Today 22 (2004).
    15 A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer and R. E. Smalley. Crystalline Ropes of Metallic Carbon Nanotubes. Science 273, 483 (1996).
    16 N. R. Franklin, Y. Li, R. J. Chen, A. Javey and H. Dai. Patterned Growth of Single-Walled Carbon Nanotubes on Full 4-Inch Wafers. Appl. Phys. Lett. 79, 4571 (2001).
    17 A. G. Rinzler, J. H. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Tománek, P. Nordlander, D. T. Colbert and R. E. Smalley. Unraveling Nanotubes: Field Emission from an Atomic Wire. Science 269, 1550 (1995).
    18 S. J. Tans, A. R. M. Verschueren and C. Dekker. Room-Temperature Transistor Based on a Single Carbon Nanotube. Nature 393, 49 (1998).
    19 R. Martel, T. Schmidt, T. Hertel and Ph. Avouris. Single- and Multi-Wall Carbon Nanotube Field-Effect Transistors. Appl. Phys. Lett. 73, 2447 (1998).
    20 G-H Jeong, A. Yamazaki, S. Suzuki, H. Yoshimura, Y. Kobayashi and Y. Homm. Cobalt-Filled Apoferritin for Suspended Single-Walled Carbon Nanotube Growth with Narrow Diameter Distribution. J. Am. Chem. Soc. 127, 8238 (2005).
    21 A. R. Harutyunyan, T. Tokune, E. Mora, J-W Yoo and A. J. Epstein. Evolution of Catalyst Particle Size during Carbon Single Walled Nanotube Growth and its Effect on the Tube Characteristics. J. Appl. Phys. 100, 044321 (2006).
    22 M. Ishida, H. Hongo, F. Nihey and Y. Ochiai. Diameter-Controlled Carbon Nanotubes Grown from Lithographically Defined Nanoparticles. Jpn. J. Appl. Phys. 43, L1356 (2004).
    23 T. de los Arcos, M. G. Garnier, J. W. Seo, P. Oelhafen, V. Thommen and D. Mathys. The Influence of Catalyst Chemical State and Morphology on Carbon Nanotube Growth. J. Phys. Chem. B 108, 7728 (2004).
    24 T. de los Arcos, Z. M. Wu and P. Oelhafen. Is Aluminum a Suitable Buffer Layer for Carbon Nanotube Growth? Chem. Phys. Lett. 380, 419 (2003).
    25 R. G. Lacerda, K. B. K. Teo, A. S. Teh, M. H. Yang, S. H. Dalal, D. A. Jefferson, J. H. Durrell, N. L. Rupesinghe, D. Roy, G. A. J. Amaratunga, W. I. Milne, F. Wyczisk, P. Legagneux, M. Chhowalla. Thin-Film Metal Catalyst for the Production of Multi-Wall and Single-Wall Carbon Nanotubes. J. Appl. Phys. 96, 4456 (2004).
    26 J. E. Herrera, L. Balzano, A. Borgna, W. E. Alvarez, D. E. Resasco. Relationship between the Structure/Composition of Co–Mo Catalysts and Their Ability to Produce Single-Walled Carbon Nanotubes by CO Disproportionation. J. Cata. 204, 129 (2001).
    27 B. C. Liu, S. C. Lyu, T. J. Lee, S. K. Choi, S. J. Eum, C. W. Yang, C. Y. Park, C. J. Lee. Synthesis of Single- and Double-Walled Carbon Nanotubes by Catalytic Decomposition of Methane. Chem. Phys. Lett. 373, 475 (2003).
    28 L. Delzeit, B. Chen, A. Cassell, R. Stevens, C. Nguyen, M. Meyyappan. Multilayered Metal Catalysts for Controlling the Ddensity of Single-Walled Carbon Nanotube Growth. Chem. Phys. Lett. 348, 368 (2001).
    29 R. G. Lacerda, A. S. Teh, M. H. Yang, K. B. K. Teo, N. L. Rupesinghe, S. H. Dalal, K. K. K. Koziol, D. Roy, G. A. J. Amaratunga, W. I. Milne, M. Chhowalla, D. G. Hasko, F. Wyczisk, P. Legagneux. Growth of High-Quality Single-Wall Carbon Nanotubes without Amorphous Carbon Formation. Appl. Phys. Lett. 84, 269 (2004).
    30 S-M Kim, Y Zhang, K B K Teo, M S Bell, L Gangloff, X Wang, W I Milne, J Wu, J Jiao, S-B Lee. SWCNT Growth on Al/Fe/Mo Investigated by In Situ Mass Spectroscopy. Nanotechnology 18, 185709 (2007).
    31 R. Y. Zhang, I. Amlani, J. Baker, J. Tresek, R. K. Tsui. Chemical Vapor Deposition of Single-Walled Carbon Nanotubes Using Ultrathin Ni/Al Film as Catalyst. Nano Lett. 3, 731 (2003).
    32 K. D. Matthews, M. G. Lemaitre, T. Kim, H. Chen, M. Shim, J-M Zuo. Growth Modes of Carbon Nanotubes on Metal Substrates. J. Appl. Phys. 100, 044309 (2006).
    33 M. Lin, J. P. Y. Tan, C. Boothroyd, K. P. Loh, E. S. Tok, Y-L Foo. Direct Observation of Single-Walled Carbon Nanotube Growth at the Atomistic Scale. Nano Lett. 6, 449 (2006).
    34 G-H Jeong, S. Suzuki, Y. Kobayashi, A. Yamazaki, H. Yoshimura, Y. Homma. Effect of Nanoparticle Density on Narrow Diameter Distribution of Carbon Nanotubes and Particle Evolution during Chemical Vapor Deposition Growth. J. Appl. Phys. 98, 124311 (2005).
    35 S. Helveg, C. Lo´ pez-Cartes, J. Sehested, P. L. Hansen, B. S. Clausen, J. R. Rostrup-Nielsen, F. Abild-Pedersen, J. K. Nørskov. Atomic-Scale Imaging of Carbon Nanofibre Growth. Nature 427, 426 (2004).
    36 Ding Feng, Kim Bolton. The Importance of Supersaturated Carbon Concentration and its Distribution in Catalytic Particles for Single-Walled Carbon Nanotube Nucleation. Nanotechnology 17, 543 (2006).
    37 Ding Feng, Kim Bolton, Arne Rosén. Nucleation and Growth of Single-Walled Carbon Nanotubes: A Molecular Dynamics Study. J. Phys. Chem. B 108, 17369 (2004).
    38 Ding Feng, Arne Rosén, Kim Bolton. The Role of the Catalytic Particle Temperature Gradient for SWNT Growth from Small Particles. Chem. Phys. Lett. 393, 309 (2004).
    39 Ding Feng, Arne Rosén, Kim Bolton. Molecular Dynamics Study of the Catalyst Particle Size Dependence on Carbon Nanotube Growth. J. Chem. Phys. 121, 2775 (2004).
    40 Ding Feng, Arne Rosén, Kim Bolton. Dependence of SWNT Growth Mechanism on Temperature and Catalyst Particle Size: Bulk versus Surface Diffusion. Carbon 43, 2215 (2005).
    41 K. Y. Shin, C. T. Lee, J. S. Kao, C. C. Kei, C. N. Hsiao, K. C. Leou, C. H. Tsai. In Situ Growth of Single-Walled Carbon Nanotubes by Using Cold-Wall Chemical Vapor Deposition. J. Taiwan Vac. Sci. 19, 31 (2006).
    42 K.Y. Shin, Y. H. Hsu, C.T. Lee, J.S. Kao, C. C. Kei, C. M. Chang, C. N. Hsiao, K. C. Leou and C.H. Tsai, “High Quality of Vertically-Aligned SWNTs Matrix Grown on Sapphire and Quartz Substrate. J. Taiwan Vac. Sci. revised.
    43 K. Y. Shin, C. T. Lee, J. S. Kao, C. C. Kei, C. M. Chang, C. N. Hsiao, J. H. Liang, K. C. Leou and C. H. Tsai. Large-Scale Growth of Single-Walled Carbon Nanotubes by Using Cold-Wall Chemical Vapor Deposition. J. Vac. Sci. Technol. B 25, 1482 (2007).
    44 C. H. Nien, C. H. Tsai, K. Y. Shin and W. B. Jian. Methods of Determining the Contact between a Probe and a Surface under Scanning Electron Microscopy. Rev. Sci. Instrum. 77, 103709 (2006).
    45 K. Y. Shin and C. H. Tsai. Multi-Probe Nano-Electronics Measurement System. Electronic Monthly 123, 250 (2006).
    46 H. T. Soh, C. F. Quate, A. F. Morpurgo, C. M. Marcus, J. Kong, H. Dai. Integrated Nanotube Circuits: Controlled Growth and Ohmic Contacting of Single-Walled Carbon Nanotubes. Appl. Phys. Lett. 75, 627 (1999).
    47 N. R. Franklin, Q. Wang, T. W. Tombler, A. Javey, M. Shim, H. Dai. Integration of suspended carbon nanotube arrays into electronic devices and electromechanical systems. Appl. Phys. Lett. 81, 913 (2002).
    48 H. Hongo, F. Nihey, T. Ichihashi, Y. Ochiai, M. Yudasaka, S. Iijima. Support Materials Based on Converted Aluminum Films for Chemical Vapor Deposition Growth of Single-Wall Carbon Nanotubes. Chem. Phys. Lett. 380, 158 (2003).
    49 B. C. Liu, S. C. Lyu, S. I. Jung, H. K. Kang, C. W. Yang, J. W. Park, C. Y. Park, C. J. Lee. Single-Walled Carbon Nanotubes Produced by Catalytic Chemical Vapor Deposition of Acetylene over Fe–Mo/MgO Catalyst. Chem. Phys. Lett. 383, 104 (2004).
    50 K.Y. Shin, D.L. Ma, S.H. Tsai, C.H. Tsai. Catalytic Growth of Single-Walled Carbon Nanotubes by Supported Bi-Metallic Technique, Paper ID:210. The International Union of Material Research Society, International Conference in Asia (IUMRS-ICA2004), Hsinchu, Taiwan, 16-18 November, 2004.
    51 H. C. Su, K. Y. Shin, K. C. Leou, C. H. Tsai. On the Roles of Multilayered Metal Catalysts in the Synthesis of High-Quality Single-Walled Carbon Nanotubes. IEEE Conference on Emerging Technologies, Singapore, January 10-13, 2006, Paper ID: 68-CN-A0150.
    52 H. Cui, G. Eres, J. Y. Howe, A. Puretkzy, M. Varela, D. B. Geohegan, D. H. Lowndes. Growth Behavior of Carbon Nanotubes on Multilayered Metal Catalyst Film in Chemical Vapor Deposition. Chem. Phys. Lett. 374, 222 (2003).
    53 H. Liao, J. H. Hafner. Low-Temperature Single-Wall Carbon Nanotube Synthesis by Thermal Chemical Vapor Deposition. Phys. Chem. B 108, 6941 (2004).
    54 Y. Homma, Y. Kobayashi, P. FINNIE, M. TOMITA, T. Ogino. Single-Walled Carbon Nanotube Growth on Silicon Substrates Using Nanoparticle Catalysts. Jpn. J. Appl. Phys. 41, 89 (2002).
    55 A. T. Allen, D. L. Douglass. Internal-Carburizing Behavior of Ni-V, Ni-Cr, and Ni-3Nb Alloys. Oxid. Met. 51, 314 (1999).
    56 O. A. Louchev, Y. Sato, H. Kanda. Growth Mechanism of Carbon Nanotube Forests by Chemical Vapor Deposition. Appl. Phys. Lett. 80, 2752 (2002).
    57 Y. A. Mo, Z.Y. Juang, J. F. Lai, C.H. Tsai. The Effect of Catalysts (Iron, Cobalt and Nickel) on the Mechanism and Kinetics of Carbon Nanotube Growth by Thermal CVD Method. Sixth International Conference on the Science and Application of Nanotubes (NT05), Göteborg University, Chalmers University of Technology, and University College of Borås, Gothenburg, Sweden, June 26 - July 1, 2005.
    58 R. Ohnishi, S. Liu, Q. Dong, L. Wang, M. Ichikawa. Catalytic Dehydrocondensation of Methane with CO and CO2 toward Benzene and Naphthalene on Mo/HZSM-5 and Fe/Co-Modified Mo/HZSM-5. J. Cata. 182, 92 (1999).
    59 A. M. Cassell, J. A. Raymakers, J. Kong, H. Dai. Large Scale CVD Synthesis of Single-Walled Carbon Nanotubes. J. Phys. Chem. 103, 6484 (1999).
    60 E. S. Snow, F. K. Perkins, E. J. Houser, S. C. Badescu, T. L. Reinecke. Chemical Detection with a Single-Walled Carbon Nanotube Capacitor. Science 307, 1942 (2005).
    61 W. Hoenlein, F. Kreupl, G. S. Duesberg, A. P. Graham, M. Liebau, R. V. Seidel, E. Unger. Carbon Nanotube Applications in Microelectronics. IEEE Trans. Compon. Packag. Technol. 27, 620 (2004).
    62 J. Kong, A. M. Cassell, H. Dai. Chemical Vapor Deposition of Methane for Single-Walled Carbon Nanotubes. Chem. Phys. Lett. 292, 567 (1998).
    63 K. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumura, S. Iijima. Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes. Science 306, 1362 (2004).
    64 Y. Zhang, Y. Li, W. Kim, D. Wang, H. Dai. Imaging As-Grown Single-Walled Carbon Nanotubes Originated from Isolated Catalytic Nanoparticles. Appl. Phys. A 74, 325 (2002).
    65 M. Lin, J. P. Y. Tan, C. Boothroyd, K. P. Loh, E. S. Tok, Y-L Foo. Direct Observation of Single-Walled Carbon Nanotube Growth at the Atomistic Scale. Nano Lett. 6, 449 (2006).
    66 L. H. Liang, F. Liu, D. X. Shi, W. M. Liu, X. C. Xie, H. J. Gao. Nucleation and Reshaping Thermodynamics of Ni as Catalyst of Carbon Nanotubes. Phys. Rev. B 72, 035453 (2005).
    67 Q-X Liu, C-X Wang, Y-H Yang, G-W Yang. One-Dimensional Nanostructures Grown inside Carbon Nanotubes upon Vapor Deposition: A Growth Kinetic Approach. Appl. Phys. Lett. 84, 4568 (2004).
    68 M. Grant, J. D. Gunton. Theory for the Nucleation of a Crystalline Droplet from the Melt. Phys. Rev. B 32, 7299 (1985).
    69 J. Brillo, I. Egry. Surface Tension of Nickel, Copper, Iron and their Binary Alloys. J. Mater. Sci. 40, 2213 (2005).
    70 J. Garai. Physical Model for the Latent Heat of Fusion. Chem. Phys. Lett. 398, 98 (2004).
    71 K. Y. Shin, H. C. Su, C. H. Tsai. In Situ Growth of Single-Walled Carbon Nanotubes by Bimetallic Technique with/without Dielectric Support for Nanodevice Applications. J. Vac. Sci. Technol. B 24, 358 (2006).
    72 J. F. Mojica, L. L. Levenson. Bulk-to-Surface Precipitation and Surface Diffusion of Carbon on Polycrystalline Nickel. Surf. Sci. 59, 447 (1976).
    73 M-P Lu, C-Y Hsiao, P-Y Lo, J-H Wei, Y-S Yang, M-J Chen. Semiconducting Single-Walled Carbon Nanotubes Exposed to Distilled Water and Aqueous Solution: Electrical Measurement and Theoretical Calculation. Appl. Phys. Lett. 88, 053114 (2006).
    74 R. Martel, V. Derycke, C. Lavoie, J. Appenzeller, K. K. Chan, J. Tersoff, Ph. Avouris. Ambipolar Electrical Transport in Semiconducting Single-Wall Carbon Nanotubes. Phys. Rev. Lett. 87, 256805 (2001).
    75 Z. Chen, J. Appenzeller, J. Knoch, Y. M. Lin, Ph. Avouris. The Role of Metal-Nanotube Contact in the Performance of Carbon Nanotube Field-Effect Transistors. Nano Lett. 5, 1497 (2005).
    76 Y-C Tseng, K. Phoa, D. Carlton, J. Bokor. Effect of Diameter Variation in a Large Set of Carbon Nanotube Transistors. Nano Lett. 6, 1364 (2006).
    77 P. R. Wallace. The Band Theory of Graphite. Phys. Rev. 71, 622 (1947).
    78 R. Saito, M. Fujita, G. Dresselhaus, M. S Dresselhaus. Electronic Structure of Chiral Graphene Tubules. Appl. Phys. Lett. 60, 2204 (1992).
    79 M. S. Dresselhaus, G. Dresselhausc, A. Jorio, A.G. Souza Filho, R. Saito. Raman Spectroscopy on Isolated Single Wall Carbon Nanotubes. Carbon 40, 2043 (2002).
    80 J. Maultzsch, H. Telg, S. Reich, C. Thomsen. Radial Breathing Mode of Single-Walled Carbon Nanotubes: Optical Transition Energies and Chiral-Index Assignment. Phys. Rev. B 72, 205438 (2005).
    81 F. Ding, A. Rosén, K. Bolton. Iron-Carbide Cluster Thermal Dynamics for Catalyzed Carbon Nanotube Growth. J. Vac. Sci. Tech. A 22, 1471 (2004).
    82 F. Ding, K. Bolton, A. Rosén. Size Dependence of the Coalescence and Melting of Iron Clusters: A Molecular-Dynamics Study. Phys. Rev. B 70, 075416 (2004).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE