研究生: |
蔣元召 Yuan-Chao Chiang |
---|---|
論文名稱: |
動態3-D幾何下正立方體與正八面體的組合 Compounds of Cubes and Regular Octahedrons under Dynamic 3-D Geometry |
指導教授: |
全任重
Jen-Chung Chuan |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 18 |
中文關鍵詞: | 正立方體組合 |
外文關鍵詞: | compound of cubes |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這篇文章我們利用Cabri 3D建構一系列由正立方體組合而成的萬花筒,並指出在這些萬花筒變化的過程中包含的已知正立方體的組合。建構的方法主要從一個正立方體的三種對稱軸出發,除了將一個正立方體沿著特定的對稱軸順時針與逆時針旋轉可得到一系列的組合外,將一個正立方體的某幾條對稱軸以特定的擺法重疊於正十二面體與正二十面體的某幾條對稱軸也可獲得幾組正立方體的組合。最後,我們利用正立方體與正八面體的對稱軸種類與數目完全相同的性質,介紹一些正八面體的組合模型。
A compound of cubes is a set of equal cubes with a common center. The Section1 in this paper is to gather some well-known compounds according to the numbers of cubes used in Cabri 3D construction. Since the cube and the octahedron are duel to each other, the Section2 discusses the construction related to octahedron compounds. In the Section3, we create a series of 3-D kaleidoscopes induced by cubes’ compounds by applying the rotations to a model. Finally, we discuss the combinatorial problems related to the compounds.
The content of this paper may be found in
http://apollonius.math.nthu.edu.tw/d1/dg-07-exe/943210/web/index.htm
1.http://www.math.nthu.edu.tw/~jcchuan/
2.http://www.georgehart.com/virtual-polyhedra/compounds-info.html
3.http://www.georgehart.com/virtual-polyhedra/compound-cubes-info.html
4.http://www.georgehart.com/virtual-polyhedra/compound-cubes-index.html
5.http://www.georgehart.com/virtual-polyhedra/uniform-compounds-info.html
6.http://www.georgehart.com/virtual-polyhedra/compounds-spin.html
7.http://mathworld.wolfram.com/PolyhedronCompound.html
8.http://mathworld.wolfram.com/Cube2-Compound.html
9.http://mathworld.wolfram.com/Cube3-Compound.html
10.http://mathworld.wolfram.com/Cube4-Compound.html
11.http://mathworld.wolfram.com/Cube5-Compound.html
12.http://mathworld.wolfram.com/Cube6-Compound.html
13.http://mathworld.wolfram.com/Cube7-Compound.html
14.http://mathworld.wolfram.com/Cube10-Compound.html
15.http://mathworld.wolfram.com/Octahedron2-Compound.html
16.http://mathworld.wolfram.com/Octahedron3-Compound.html
17.http://mathworld.wolfram.com/Octahedron4-Compound.html
18.http://mathworld.wolfram.com/Octahedron5-Compound.html
19.http://mathworld.wolfram.com/Octahedron10-Compound.html
20.Hugo F. Verheyen, "Symmetry Orbits", Birkhauser, 1996.
21.Wenninger, M. J. "Dual Models ", Cambridge University Press, 1983.
22.Coxeter H.S.M., “Regular Polytopes”, Dover, New York, 1973.
23.Bakos, T., Octahedra inscribed in a cube, Math. Gaz. XLIII, 17-20, 1959.
24.Coxeter H.S.M., M. S. Longuet-Higgins, and J. C. P. Miller, Uniform Polyhedra, Phil. Trans. Royal Soc. London 264A, 401-450, 1954.
25.Skilling, J., The complete set of Uniform Polyhedra, Phil. Trans. Royal Soc. London 278A, 111-135, 1975.