簡易檢索 / 詳目顯示

研究生: 游彬彥
Yu, Pin-Yen
論文名稱: 高壓高流速滲透驅動裝置的開發與三維列印
3D printed highly permeable and selective devices for rapid osmotic pumping
指導教授: 蘇育全
Su, Yu-Chuan
口試委員: 陳宗麟
Chen, Tsung-Lin
陳紹文
Chen, Shao-Wen
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2022
畢業學年度: 111
語文別: 中文
論文頁數: 98
中文關鍵詞: 三維列印半透膜滲透壓光固化高流速水幫浦
外文關鍵詞: 3D-printed, membrane, osmosis, light curing, high flow-rate, osmotic pumping
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 滲透是一種廣泛存在於生物系統中的被動運輸機制,並被各種便攜式的系統用作動力機制。滲透式水幫浦很有吸引力,因為它是恆定速度、高壓並且不需要電力來操作。滲透式水幫浦的促成因素主要是半透膜,它不允許任何溶質穿過,但是水可以通過它進行擴散。但其透水性能通常較為不足,如此一來就限制了滲透式水幫浦的流速和實際的應用。本論文的目標是開發一種半滲透隔膜結構和滲透式水幫浦的製造和整合方法。更具體地說,它可以很容易地製造出具有高流速、便攜性和低成本的滲透式水幫浦。
    本論文提出了一種紫外光聚合的方法,可形成具有高透水性和選擇性的3D半透隔膜結構。基於雙酚 A 乙氧基化二丙烯酸酯 (BPA-EDA) 的光固化樹脂使用基於 DLP(數位光處理)的投影立體光固化成型的工藝進行紫外光固化。為了實現高透水性,使用了由剛性實心框架支撐的聚合物半透膜,其框架孔隙率高達70%。半透隔膜結構是通過紫外聚合光樹脂和聚乙二醇 (PEG) 的混合物形成的。在本論文中,我們發現成分、厚度和紫外線曝光等條件是影響紫外光聚合半透隔膜滲透性的關鍵因素。除了雙官能基的 BPA-EDA單體外,光固化樹脂中還包含單官能基的 2-(丁基氨基甲酰氧基)丙烯酸乙酯單體和三官能基的乙氧基化三羥甲基丙烷三丙烯酸酯單體,用來優化 UV 固化結構的性能,這些結構層層堆疊以形成本研究所需的3D結構。在原型展示中,製造並展示了面積為1 cm2的半透隔膜組件和體積僅為1 cm3的3D容器腔體。本論文製造的半透隔膜可以實現高達2 μm/s的高水滲透速度,並且能承受高達15 kPa的正向壓力。單位立方大小的滲透式水幫浦可輸送高達0.2 μL/s的水流量。因此,滲透式水幫浦可以作為流動的驅動來源,為各種微流道控制晶片提供驅動力。


    Osmosis is a passive transport mechanism widely found in biological systems and adapted by various portable systems as powering mechanism. Osmotic pumping is attractive because it is constant-rate, high-pressure, and requires no electricity for operation. The enabling element in osmotic pumping is the semi-permeable membrane that allows no solute but water to diffuse across it. However, its water permeability is usually low, which limits the pumping rate and practical application of osmotic pumps. The goal of this thesis is to develop a fabrication and integration scheme for semi-permeable structures and osmotic pumps. More specifically, it can easily build osmotic pumps with high flow-rate, great portability, and low cost.
    This thesis presents a UV-polymerization scheme that forms 3D semipermeable structures with high water permeability and selectivity. Photoresins based on bisphenol A ethoxylate diacrylate (BPA-EDA) are UV cured using DLP (digital light processing) based projection stereo¬lithography processes. To achieve high water permeability, hydrogel semi-permeable membranes supported by rigid solid frames are utilized. The hydrogel structures are formed by UV-polymerizing the mixtures of photoresin and polyethylene glycol (PEG). It is found that composition, thickness, and exposure conditions are the key factors affecting the permeability of UV polymerized hydrogel membranes. In addition to di-functional BPA-EDA, mono-functional 2-(butyl-carbamoyloxy)ethyl acrylate and tri-functional ethoxylatedtrimethylolpropane triacrylate are included in the photoresins to optimize the properties of UV-cured structures, which are stacked layer-by-layer to form 3D devices. In the prototype demonstration, thin components of 1 cm2 in area and 3D devices of 1 cm3 in volume are fabricated and characterized. The fabricated semi-permeable membranes can achieve high water crossing velocity up to 2 μm/s and sustain pressure up to 15 kPa. The cubic osmotic pumps can deliver water flow-rate up to 0.2 μL/s. As such, they can function as flow driving sources to power various microfluidic chips.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 viii 表目錄 xii 第一章、緒論 1 1.1 前言 1 1.2 滲透式水幫浦原理及應用 2 1.2.1水勢能 2 1.2.2半透膜 2 1.2.3滲透作用原理 3 1.2.4滲透作用的應用 4 1.2.5逆滲透隔膜及其應用 5 1.2.6滲透式水幫浦的應用 6 1.3 三維列印 7 1.3.1三維列印技術介紹 7 1.3.2光固化三維列印 8 1.4 光聚合反應 9 1.4.1自由基型聚合反應(Free radical polymerization) 9 1.4.2陽離子型聚合反應(Cationic polymerization) 10 1.5 研究動機與目的 11 第二章、文獻回顧 12 2.1 光固化成型半透膜 12 2.2 薄膜之聚合誘導相分離(PIPS) 13 2.3 薄膜微結構製備之參數 17 2.3.1分散相(溶劑)種類 17 2.3.2分散相(溶劑)濃度 18 2.3.3 UV強度 19 2.4 薄膜之PEO-PBT共嵌聚合物 20 2.5 隔膜滲透經驗公式 25 2.6 膜阻力 26 第三章、實驗原理與設計 27 3.1 實驗機台介紹 27 3.1.1上拉式DLP機台介紹 27 3.1.2上拉式DLP製造流程 28 3.1.3下沉式多波長DLP機台介紹 30 3.1.4拉伸測試機台介紹 31 3.1.5其他實驗設備與儀器 32 3.2 實驗材料介紹 32 3.2.1 R1成分 32 3.2.2半透隔膜材料 34 3.3 滲透測試裝置簡介 39 3.3.1部件介紹 39 3.3.2部件設計 40 3.4 滲透式測試裝置製程 43 3.4.1容器腔體 43 3.4.2密封墊片 43 3.4.3半透隔膜組 44 3.4.4半透隔膜組與容器腔體接合製程 49 第四章、研究結果與分析 53 4.1 測試方式與標準 53 4.2 隔膜支架厚度控制 54 4.3 隔膜微結構調整 55 4.3.1分散相比例 55 4.3.2分散相分子量 56 4.3.3曝光劑量的影響 57 4.3.4 SEM圖像 58 4.4 隔膜厚度的影響 61 4.5 隔膜的分子結構 63 4.5.1 R1與ETPTA比較 63 4.5.2 ETPTA與BPA(30EO)DA和Doublemer 576比較 64 4.5.3 BPA(30EO)DA比例的影響 65 4.5.4預聚物種類的影響 67 4.5.5 TMP(9EO)TA取代Doublemer 576影響 68 4.5.6單官能基材料比例的影響 69 4.5.7單官能基種類的影響 70 4.5.8曝光劑量優化與複合材料的水滲透速度測試 71 4.6 隔膜後處理對水滲透速度的影響 73 4.7 隔膜機械特性 74 4.7.1隔膜耐壓測試 74 4.7.2單一材料的拉伸特性 78 4.7.3複合材料拉伸測試 79 4.8 商用防水透濕隔膜的水滲透性 80 4.9 聚二甲基矽氧烷(PDMS)的水滲透性 81 4.10 倒杯滲透實驗 82 4.11 反向壓力測試 83 4.11.1商用防水透濕膜 83 4.11.2光固化半透隔膜 83 4.12 一次成型三維列印隔膜 86 第五章、結論 87 5.1 光聚合隔膜微結構 87 5.2 隔膜的化學結構 87 5.3 隔膜機械結構 89 5.4 滲透式裝置流速 90 5.5 一次成型的三維列印隔膜 91 第六章、未來建議 92 6.1 隔膜製程的改良 92 6.2 容器腔體的改良與開發 93 6.2.1單一裝置改良 93 6.2.2複合裝置結合 94 6.3 一次成型滲透式裝置 94 參考資料 96

    1.Ju, H., McCloskey, B.D., Sagle, A.C., Kusuma, V.A., and Freeman, B.D.: ‘Preparation and characterization of crosslinked poly(ethylene glycol) diacrylate hydrogels as fouling-resistant membrane coating materials’, Journal of Membrane Science, 2009, 330, (1-2), pp. 180-188
    2.Car, A., Stropnik, C., Yave, W., and Peinemann, K.-V.: ‘PEG modified poly(amide-b-ethylene oxide) membranes for CO2 separation’, Journal of Membrane Science, 2008, 307, (1), pp. 88-95
    3.Robeson, L.M.: ‘Correlation of separation factor versus permeability for polymeric membranes’, Journal of Membrane Science, 1991, 62, (2), pp. 165-185
    4.莊仁奕:‘水勢能’, 科學Online, 2014
    5.陳藹然,黃俊誠:‘滲透(Osmosis)和半透膜(Semipermeable Membrane)’, 科學Online, 2009
    6.Lomax, G.R.: ‘The Design of Waterproof, Water Vapour-Permeable Fabrics’, Journal of Coated Fabrics, 2016, 15, (1), pp. 40-66
    7.陳藹然,黃俊誠:‘滲透壓(一)’, 科學Online, 2009
    8.Baker, R.W.: ‘Membrane technology and applications’ (John Wiley & Sons, 2012. 2012)
    9.Mulder, M., and Mulder, J.: ‘Basic principles of membrane technology’ (Springer science & business media, 1996. 1996)
    10.陳藹然,黃俊誠:‘滲透壓(二)’, 科學Online, 2009
    11.洪雋為:‘逆滲透’, 科學Online, 2013
    12.Theeuwes, F., and Yum, S.: ‘Principles of the design and operation of generic osmotic pumps for the delivery of semisolid or liquid drug formulations’, Annals of biomedical engineering, 1976, 4, (4), pp. 343-353
    13.Sampson, K.L., Deore, B., Go, A., Nayak, M.A., Orth, A., Gallerneault, M., Malenfant, P.R.L., and Paquet, C.: ‘Multimaterial Vat Polymerization Additive Manufacturing’, ACS Applied Polymer Materials, 2021, 3, (9), pp. 4304-4324
    14.陳育賢:‘軟性導電複合結構的快速成型與穿戴式感測器應用’, 國立清華大學工程與系統科學系碩士論文, 2021
    15.Shang, L., Cheng, Y., Wang, J., Yu, Y., Zhao, Y., Chen, Y., and Gu, Z.: ‘Osmotic pressure-triggered cavitation in microcapsules’, Lab Chip, 2016, 16, (2), pp. 251-255
    16.Durmaz, S., and Okay, O.: ‘Phase separation during the formation of poly(acrylamide) hydrogels’, Polymer, 2000, 41, (15), pp. 5729-5735
    17.Li, M., Joung, D., Kozinski, J.A., and Hwang, D.K.: ‘Fabrication of Highly Porous Nonspherical Particles Using Stop-Flow Lithography and the Study of Their Optical Properties’, Langmuir, 2017, 33, (1), pp. 184-190
    18.Wu, Y.-H., Park, H.B., Kai, T., Freeman, B.D., and Kalika, D.S.: ‘Water uptake, transport and structure characterization in poly(ethylene glycol) diacrylate hydrogels’, Journal of Membrane Science, 2010, 347, (1-2), pp. 197-208
    19.Swinyard, B.T., Sagoo, P.S., Barrie, J.A., and Ash, R.: ‘The transport and sorption of water in polyethersulphone, polysulphone, and polyethersulphone/phenoxy blends’, Journal of Applied Polymer Science, 1990, 41, (9-10), pp. 2479-2485
    20.Gebben, B.:‘A water vapor-permeable membrane from block copolymers of poly(butylene terephthalate) and polyethylene oxide’, Journal of Membrane Science, 1996, 113, (2), pp. 323-329
    21.Jonquières, A.: ‘Permeability of block copolymers to vapors and liquids’, Progress in Polymer Science, 2002, 27, (9), pp. 1803-1877
    22.Metz, S.J., van der Vegt, N.F.A., Mulder, M.H.V., and Wessling, M.: ‘Thermodynamics of Water Vapor Sorption in Poly(ethylene oxide) Poly(butylene terephthalate) Block Copolymers’, The Journal of Physical Chemistry B, 2003, 107, (49), pp. 13629-13635
    23.Wellons, J.D., and Stannett, V.: ‘Permeation, sorption, and diffusion of water in ethyl cellulose’, Journal of Polymer Science Part A-1: Polymer Chemistry, 1966, 4, (3), pp. 593-602
    24.Poling, B.E., Prausnitz, J.M., and O’connell, J.P.: ‘Properties of gases and liquids’ (McGraw-Hill Education, 2001. 2001)
    25.Lin, H., and Freeman, B.D.: ‘Gas solubility, diffusivity and permeability in poly(ethylene oxide)’, Journal of Membrane Science, 2004, 239, (1), pp. 105-117
    26.Metz, S., Vandeven, W., Potreck, J., Mulder, M., and Wessling, M.: ‘Transport of water vapor and inert gas mixtures through highly selective and highly permeable polymer membranes’, Journal of Membrane Science, 2005, 251, (1-2), pp. 29-41
    27.Wikipedia contributors: ‘Barrer’, in Editor (Ed.)^(Eds.): ‘Book Barrer’ (edn.), pp.
    28.Lin, H., and Freeman, B.D.: ‘Gas and Vapor Solubility in Cross-Linked Poly(ethylene Glycol Diacrylate)’, Macromolecules, 2005, 38, (20), pp. 8394-8407
    29.Lin, H., Kai, T., Freeman, B.D., Kalakkunnath, S., and Kalika, D.S.: ‘The Effect of Cross-Linking on Gas Permeability in Cross-Linked Poly(Ethylene Glycol Diacrylate)’, Macromolecules, 2005, 38, (20), pp. 8381-8393
    30.Datta, J., and Kasprzyk, P.: ‘Thermoplastic polyurethanes derived from petrochemical or renewable resources: A comprehensive review’, Polymer Engineering & Science, 2018, 58, (S1), pp. E14-E35
    31.Firpo, G., Angeli, E., Repetto, L., and Valbusa, U.: ‘Permeability thickness dependence of polydimethylsiloxane (PDMS) membranes’, Journal of Membrane Science, 2015, 481, pp. 1-8
    32.Mark, J.E.: ‘Some interesting things about polysiloxanes’, Acc Chem Res, 2004, 37, (12), pp. 946-953
    33.Bian, P., Wang, Y., and McCarthy, T.J.: ‘Rediscovering Silicones: The Anomalous Water Permeability of “Hydrophobic” PDMS Suggests Nanostructure and Applications in Water Purification and Anti-Icing’, Macromolecular Rapid Communications, 2021, 42, (5), pp. 2000682
    34.Krumpfer, J.W., and McCarthy, T.J.: ‘Rediscovering silicones: "unreactive" silicones react with inorganic surfaces’, Langmuir, 2011, 27, (18), pp. 11514-11519
    35.Zhang, Y., Ishida, M., Kazoe, Y., Sato, Y., and Miki, N.: ‘Water-vapor permeability control of PDMS by the dispersion of collagen powder’, IEEJ Transactions on Electrical and Electronic Engineering, 2009, 4, (3), pp. 442-449

    QR CODE