研究生: |
游彬彥 Yu, Pin-Yen |
---|---|
論文名稱: |
高壓高流速滲透驅動裝置的開發與三維列印 3D printed highly permeable and selective devices for rapid osmotic pumping |
指導教授: |
蘇育全
Su, Yu-Chuan |
口試委員: |
陳宗麟
Chen, Tsung-Lin 陳紹文 Chen, Shao-Wen |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2022 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 98 |
中文關鍵詞: | 三維列印 、半透膜 、滲透壓 、光固化 、高流速 、水幫浦 |
外文關鍵詞: | 3D-printed, membrane, osmosis, light curing, high flow-rate, osmotic pumping |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
滲透是一種廣泛存在於生物系統中的被動運輸機制,並被各種便攜式的系統用作動力機制。滲透式水幫浦很有吸引力,因為它是恆定速度、高壓並且不需要電力來操作。滲透式水幫浦的促成因素主要是半透膜,它不允許任何溶質穿過,但是水可以通過它進行擴散。但其透水性能通常較為不足,如此一來就限制了滲透式水幫浦的流速和實際的應用。本論文的目標是開發一種半滲透隔膜結構和滲透式水幫浦的製造和整合方法。更具體地說,它可以很容易地製造出具有高流速、便攜性和低成本的滲透式水幫浦。
本論文提出了一種紫外光聚合的方法,可形成具有高透水性和選擇性的3D半透隔膜結構。基於雙酚 A 乙氧基化二丙烯酸酯 (BPA-EDA) 的光固化樹脂使用基於 DLP(數位光處理)的投影立體光固化成型的工藝進行紫外光固化。為了實現高透水性,使用了由剛性實心框架支撐的聚合物半透膜,其框架孔隙率高達70%。半透隔膜結構是通過紫外聚合光樹脂和聚乙二醇 (PEG) 的混合物形成的。在本論文中,我們發現成分、厚度和紫外線曝光等條件是影響紫外光聚合半透隔膜滲透性的關鍵因素。除了雙官能基的 BPA-EDA單體外,光固化樹脂中還包含單官能基的 2-(丁基氨基甲酰氧基)丙烯酸乙酯單體和三官能基的乙氧基化三羥甲基丙烷三丙烯酸酯單體,用來優化 UV 固化結構的性能,這些結構層層堆疊以形成本研究所需的3D結構。在原型展示中,製造並展示了面積為1 cm2的半透隔膜組件和體積僅為1 cm3的3D容器腔體。本論文製造的半透隔膜可以實現高達2 μm/s的高水滲透速度,並且能承受高達15 kPa的正向壓力。單位立方大小的滲透式水幫浦可輸送高達0.2 μL/s的水流量。因此,滲透式水幫浦可以作為流動的驅動來源,為各種微流道控制晶片提供驅動力。
Osmosis is a passive transport mechanism widely found in biological systems and adapted by various portable systems as powering mechanism. Osmotic pumping is attractive because it is constant-rate, high-pressure, and requires no electricity for operation. The enabling element in osmotic pumping is the semi-permeable membrane that allows no solute but water to diffuse across it. However, its water permeability is usually low, which limits the pumping rate and practical application of osmotic pumps. The goal of this thesis is to develop a fabrication and integration scheme for semi-permeable structures and osmotic pumps. More specifically, it can easily build osmotic pumps with high flow-rate, great portability, and low cost.
This thesis presents a UV-polymerization scheme that forms 3D semipermeable structures with high water permeability and selectivity. Photoresins based on bisphenol A ethoxylate diacrylate (BPA-EDA) are UV cured using DLP (digital light processing) based projection stereo¬lithography processes. To achieve high water permeability, hydrogel semi-permeable membranes supported by rigid solid frames are utilized. The hydrogel structures are formed by UV-polymerizing the mixtures of photoresin and polyethylene glycol (PEG). It is found that composition, thickness, and exposure conditions are the key factors affecting the permeability of UV polymerized hydrogel membranes. In addition to di-functional BPA-EDA, mono-functional 2-(butyl-carbamoyloxy)ethyl acrylate and tri-functional ethoxylatedtrimethylolpropane triacrylate are included in the photoresins to optimize the properties of UV-cured structures, which are stacked layer-by-layer to form 3D devices. In the prototype demonstration, thin components of 1 cm2 in area and 3D devices of 1 cm3 in volume are fabricated and characterized. The fabricated semi-permeable membranes can achieve high water crossing velocity up to 2 μm/s and sustain pressure up to 15 kPa. The cubic osmotic pumps can deliver water flow-rate up to 0.2 μL/s. As such, they can function as flow driving sources to power various microfluidic chips.
1.Ju, H., McCloskey, B.D., Sagle, A.C., Kusuma, V.A., and Freeman, B.D.: ‘Preparation and characterization of crosslinked poly(ethylene glycol) diacrylate hydrogels as fouling-resistant membrane coating materials’, Journal of Membrane Science, 2009, 330, (1-2), pp. 180-188
2.Car, A., Stropnik, C., Yave, W., and Peinemann, K.-V.: ‘PEG modified poly(amide-b-ethylene oxide) membranes for CO2 separation’, Journal of Membrane Science, 2008, 307, (1), pp. 88-95
3.Robeson, L.M.: ‘Correlation of separation factor versus permeability for polymeric membranes’, Journal of Membrane Science, 1991, 62, (2), pp. 165-185
4.莊仁奕:‘水勢能’, 科學Online, 2014
5.陳藹然,黃俊誠:‘滲透(Osmosis)和半透膜(Semipermeable Membrane)’, 科學Online, 2009
6.Lomax, G.R.: ‘The Design of Waterproof, Water Vapour-Permeable Fabrics’, Journal of Coated Fabrics, 2016, 15, (1), pp. 40-66
7.陳藹然,黃俊誠:‘滲透壓(一)’, 科學Online, 2009
8.Baker, R.W.: ‘Membrane technology and applications’ (John Wiley & Sons, 2012. 2012)
9.Mulder, M., and Mulder, J.: ‘Basic principles of membrane technology’ (Springer science & business media, 1996. 1996)
10.陳藹然,黃俊誠:‘滲透壓(二)’, 科學Online, 2009
11.洪雋為:‘逆滲透’, 科學Online, 2013
12.Theeuwes, F., and Yum, S.: ‘Principles of the design and operation of generic osmotic pumps for the delivery of semisolid or liquid drug formulations’, Annals of biomedical engineering, 1976, 4, (4), pp. 343-353
13.Sampson, K.L., Deore, B., Go, A., Nayak, M.A., Orth, A., Gallerneault, M., Malenfant, P.R.L., and Paquet, C.: ‘Multimaterial Vat Polymerization Additive Manufacturing’, ACS Applied Polymer Materials, 2021, 3, (9), pp. 4304-4324
14.陳育賢:‘軟性導電複合結構的快速成型與穿戴式感測器應用’, 國立清華大學工程與系統科學系碩士論文, 2021
15.Shang, L., Cheng, Y., Wang, J., Yu, Y., Zhao, Y., Chen, Y., and Gu, Z.: ‘Osmotic pressure-triggered cavitation in microcapsules’, Lab Chip, 2016, 16, (2), pp. 251-255
16.Durmaz, S., and Okay, O.: ‘Phase separation during the formation of poly(acrylamide) hydrogels’, Polymer, 2000, 41, (15), pp. 5729-5735
17.Li, M., Joung, D., Kozinski, J.A., and Hwang, D.K.: ‘Fabrication of Highly Porous Nonspherical Particles Using Stop-Flow Lithography and the Study of Their Optical Properties’, Langmuir, 2017, 33, (1), pp. 184-190
18.Wu, Y.-H., Park, H.B., Kai, T., Freeman, B.D., and Kalika, D.S.: ‘Water uptake, transport and structure characterization in poly(ethylene glycol) diacrylate hydrogels’, Journal of Membrane Science, 2010, 347, (1-2), pp. 197-208
19.Swinyard, B.T., Sagoo, P.S., Barrie, J.A., and Ash, R.: ‘The transport and sorption of water in polyethersulphone, polysulphone, and polyethersulphone/phenoxy blends’, Journal of Applied Polymer Science, 1990, 41, (9-10), pp. 2479-2485
20.Gebben, B.:‘A water vapor-permeable membrane from block copolymers of poly(butylene terephthalate) and polyethylene oxide’, Journal of Membrane Science, 1996, 113, (2), pp. 323-329
21.Jonquières, A.: ‘Permeability of block copolymers to vapors and liquids’, Progress in Polymer Science, 2002, 27, (9), pp. 1803-1877
22.Metz, S.J., van der Vegt, N.F.A., Mulder, M.H.V., and Wessling, M.: ‘Thermodynamics of Water Vapor Sorption in Poly(ethylene oxide) Poly(butylene terephthalate) Block Copolymers’, The Journal of Physical Chemistry B, 2003, 107, (49), pp. 13629-13635
23.Wellons, J.D., and Stannett, V.: ‘Permeation, sorption, and diffusion of water in ethyl cellulose’, Journal of Polymer Science Part A-1: Polymer Chemistry, 1966, 4, (3), pp. 593-602
24.Poling, B.E., Prausnitz, J.M., and O’connell, J.P.: ‘Properties of gases and liquids’ (McGraw-Hill Education, 2001. 2001)
25.Lin, H., and Freeman, B.D.: ‘Gas solubility, diffusivity and permeability in poly(ethylene oxide)’, Journal of Membrane Science, 2004, 239, (1), pp. 105-117
26.Metz, S., Vandeven, W., Potreck, J., Mulder, M., and Wessling, M.: ‘Transport of water vapor and inert gas mixtures through highly selective and highly permeable polymer membranes’, Journal of Membrane Science, 2005, 251, (1-2), pp. 29-41
27.Wikipedia contributors: ‘Barrer’, in Editor (Ed.)^(Eds.): ‘Book Barrer’ (edn.), pp.
28.Lin, H., and Freeman, B.D.: ‘Gas and Vapor Solubility in Cross-Linked Poly(ethylene Glycol Diacrylate)’, Macromolecules, 2005, 38, (20), pp. 8394-8407
29.Lin, H., Kai, T., Freeman, B.D., Kalakkunnath, S., and Kalika, D.S.: ‘The Effect of Cross-Linking on Gas Permeability in Cross-Linked Poly(Ethylene Glycol Diacrylate)’, Macromolecules, 2005, 38, (20), pp. 8381-8393
30.Datta, J., and Kasprzyk, P.: ‘Thermoplastic polyurethanes derived from petrochemical or renewable resources: A comprehensive review’, Polymer Engineering & Science, 2018, 58, (S1), pp. E14-E35
31.Firpo, G., Angeli, E., Repetto, L., and Valbusa, U.: ‘Permeability thickness dependence of polydimethylsiloxane (PDMS) membranes’, Journal of Membrane Science, 2015, 481, pp. 1-8
32.Mark, J.E.: ‘Some interesting things about polysiloxanes’, Acc Chem Res, 2004, 37, (12), pp. 946-953
33.Bian, P., Wang, Y., and McCarthy, T.J.: ‘Rediscovering Silicones: The Anomalous Water Permeability of “Hydrophobic” PDMS Suggests Nanostructure and Applications in Water Purification and Anti-Icing’, Macromolecular Rapid Communications, 2021, 42, (5), pp. 2000682
34.Krumpfer, J.W., and McCarthy, T.J.: ‘Rediscovering silicones: "unreactive" silicones react with inorganic surfaces’, Langmuir, 2011, 27, (18), pp. 11514-11519
35.Zhang, Y., Ishida, M., Kazoe, Y., Sato, Y., and Miki, N.: ‘Water-vapor permeability control of PDMS by the dispersion of collagen powder’, IEEJ Transactions on Electrical and Electronic Engineering, 2009, 4, (3), pp. 442-449