簡易檢索 / 詳目顯示

研究生: 徐國翔
Hsu, Kuo-Hsiang
論文名稱: 具高恢復良率、低儲存能耗與快速恢復之3D-堆疊8T1C非揮發性靜態隨機存取記憶體應用於低功耗之可攜式裝置
A 3D 8T1C Nonvolatile SRAM with High Restore Yield, Low Store Energy and Fast Wakeup for Low Power Mobile Applications
指導教授: 張孟凡
Chang, Meng-Fan
口試委員: 洪浩喬
Hong, Hao-Chiao
邱瀝毅
Chiou, Lih-Yih
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2017
畢業學年度: 106
語文別: 中文
論文頁數: 52
中文關鍵詞: 非揮發性靜態隨機存取記憶體3D堆疊低功耗記憶體
外文關鍵詞: Nonvolatile, SRAM, 3D-stack, Low Power, Memory
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對於有電量限制應用的裝置,如:物聯網裝置(IOT)、獵能裝置(energy harvesting device)以及穿戴式裝置等,屬於僅在短時間內運作,但有長時間的待機,通常需要進行動態電源調整,甚至將裝置中部分的晶片進行關機的程序降低待機時的能量消耗。現今主流的方式是使用靜態記憶體(SRAM)搭配非揮發-記憶體的組合,藉由靜態記憶體達到快速的運算,並透過非揮發-記憶體讓資料可以在關機後仍繼續被保存。但此種採用兩巨集晶片乎相搭配的方式(SRAM+NVM 2-marco solution)受到了晶片之間傳輸的介面限制,使得資料儲存至非揮發-記憶體晶片的時間過長並且造成大量的傳輸能量耗損。因此透過將SRAM與NVM整合成一顆記憶體單元的方式稱之為非揮發-靜態記憶體(nvSRAM) 被提出,透過位元間平行傳輸資料的方式,使得無須透過額外的傳輸介面,就能進行資料儲存與恢復,達成開機耗時更短、能量消耗更省的成效,帶給可攜式裝置更好的選擇。
    本次研究提出了一顆由6顆電晶體組成的SRAM、搭配兩顆具有高臨界電壓特性的電晶體以及1顆電容元件(8T1C)組合而成的非揮發-靜態記憶體,並且達成了1)通過指使用一顆電容元件以及只使用一個儲存週期減少了儲存能耗,2)藉由資料電壓抬升以及初始化與覆寫的操作達成了高恢復良率,以及減少了資料恢復耗能。本次提出的8T1C非揮發-靜態記憶體單元透過使用65nm的製程建構了1個512b的8T1C非揮發-靜態記憶體測試晶片,並在測試模式獲得量測的結果,證實了此記憶體單元的可行性。


    Battery-limited chip, such as IoT devices, wearable and Energy harvesting device, use the 2-macro (SRAM+NVM) solution which employ SRAM for computing and nonvolatile memory (NVM) for power-off storage to reduce standby current. Unfortunately, this solution cannot achieve frequent power-off operation, against SRAM at sleep-mode using a low supply-voltage (VDD), due to large energy usage and slow store (power-off) and restore (power-on) operations caused by the word-by- word serial transfer of data.
    Nonvolatile SRAMs (nvSRAM), which perform bit-to-bit parallel data transfer between SRAM and NVM devices within a single cell, are capable of block-level parallel data transfer with faster and more energy efficient store/restore operations than are 2-macro schemes.
    This study proposes a 8T1C nonvolatile SRAM (nvSRAM) to 1) reduce store energy by using a single capacitor device and one cycle store, 2) achieves high restore yield by using a date voltage boost and initialization and conversion scheme. We fabricated a 512b 8T1C nvSRAM test macro by using 65nm process. The measurement results are obtained by the test pattern and confirming the feasibility of this 8T1C nvSRAM cell.

    致謝 i 摘要 ii Abstract iii 目錄 iv 圖表清單 vi 專有名詞中英對照 viii CHAPTER1介紹 1 1.1記憶體在現代處理器面臨的問題 1 1.2兩巨集解決方案 2 1.3非揮發-靜態記憶體 4 CHAPTER2新興非揮發-記憶體 5 2.1相變記憶體 6 2.2磁性記憶體 7 2.3鐵電式記憶體 9 2.4電阻式記憶體 10 2.5 C軸結晶銦鎵鋅氧化薄膜電晶體 12 CHAPTER3以往的非揮發-靜態寄記憶體作品 14 3.1元件特性與操作 14 3.2 6T2R nvSRAM cell 16 3.3 8T2R nvSRAM cell 19 3.4 Rnv8T nvSRAM cell 22 3.5 IOW-7T1R nvSRAM cell 24 3.6 8T2C nvSRAM cell 26 Chapter 4提出的架構與操作方式 28 4.1非揮發-靜態記憶體單元架構與操作 29 4.2 資料儲存操作 30 4.3資料恢復操作 32 4.3A Data Voltage Boost (DVB) 32 4.3B Initialization and Overwrite (IOW) 32 4.4 SRAM Mode Operation 34 CHAPTER5 Analysis 35 5.1 Restore Yield 35 5.2 Store and Restore Energy 36 CHAPTER6 Implementation and Chip Measurement Results 39 6.1 Test Mode Design 39 6.2 Measured Results 41 6.3 Die Photo & Concussion 43 References 44

    [1] F. Hamzaoglu, et.al., "A 3.8 GHz 153 Mb SRAM Design With Dynamic Stability Enhancement and Leakage Reduction in 45 nm High-k Metal Gate CMOS Technology," IEEE Journal of Solid-State Circuits (JSSC), vol.44, no.1, pp.148,154, Jan. 2009
    [2] Y.- H. Chen, et.al., "A 0.6 V Dual-Rail Compiler SRAM Design on 45 nm CMOS Technology With Adaptive SRAM Power for Lower VDD_min VLSIs,", IEEE Journal of Solid-State Circuits (JSSC), vol.44, no.4, pp.1209,1215, April 2009
    [3] K. Itoh, et.al., "A deep sub-V, single power-supply SRAM cell with multi-V/sub T/, boosted storage node and dynamic load," Symposium on VLSI Circuits, Digest of Technical Papers(VLSIC) , pp.132,133, 13-15 June 1996
    [4] M. Helm, et.al. “A 128Gb MLC NAND-Flash device using 16nm planar cell”, in IEEE International Solid-State Circuits Conference (ISSCC) Dig. Tech. Papers, pp. 326-327, 2014
    [5] K.-T. Park, et.al. “Three- Dimensional 128Gb MLC Vertical NAND Flash Memory with 24-WL Stacked Layers and 50MB/s High-Speed Programming”, in IEEE International Solid-State Circuits Conference (ISSCC) Dig. Tech. Papers, pp. 334-335, 2014
    [6] S. Choi, et.al. “A 93.4mm2 64Gb MLC NAND-Flash Memory with 16nm CMOS Technology”, in IEEE International Solid-State Circuits Conference (ISSCC) Dig. Tech. Papers, pp. 328-329, 2014
    [7] T. Kono, et.al. “40nm Embedded SG-MONOS Flash Macros for Automotive with 160MHz Random Access for Code and Endurance Over 10M Cycles for Data”, in IEEE International Solid-State Circuits Conference (ISSCC) Dig. Tech. Papers, pp. 212-213, 2013
    [8] K. Watanabe, et.al. “66.3KIOPS-Random-Read 690MB/s-Sequential- Read Universal Flash Storage Device Controller with Unified Memory Extension”, in IEEE International Solid-State Circuits Conference (ISSCC) Dig. Tech. Papers, pp. 330-331, 2014
    [9] M. Jefremow, et.al. “Bitline-Capacitance-Cancelation Sensing Scheme with 11ns Read Latency and Maximum Read Throughput of 2.9GB/s in 65nm Embedded Flash for Automotive”, in IEEE International Solid-State Circuits Conference (ISSCC) Dig. Tech. Papers, pp. 428-430, 2012
    [10] W. Wang, et.al., "Nonvolatile SRAM Cell," International Electron Devices Meeting (IEDM), pp.1,4, 11-13 Dec. 2006
    [11] S. Yamamoto, Y. Shuto, and S. Sugahara, “Nonvolatile SRAM (NV-SRAM) using functional MOSFET merged with resistive switching devices”, in IEEE Custom Integrated Circuits Conference (CICC), pp. 531-534, 2009
    [12] T. Ohsawa, et.al., "A 1 Mb Nonvolatile Embedded Memory Using 4T2MTJ Cell With 32 b Fine-Grained Power Gating Scheme," IEEE Journal of Solid-State Circuits(JSSC), vol.48, no.6, pp.1511,1520, June 2013
    [13] P.-F. Chiu, et.al. ," A low store energy, low VDDmin, nonvolatile 8T2R SRAM with 3D stacked RRAM devices for low power mobile applications ", in IEEE Symposium on VLSI Circuits (VLSIC) Dig. Tech. Papers, pp. 229 - 230, 2010
    [14] W.J. Kim, et.al. “Extended scalability of perpendicular STT-MRAM towards sub-20nm MTJ node”, in IEEE International Electron Devices Meeting (IEDM) Dig. Tech. Papers, pp. 24.1.1-24.1.4, 2011
    [15] E. Kitagawa, et.al. “Impact of ultra-low power and fast write operation of advanced perpendicular MTJ on power reduction for high-performance mobile CPU”, in IEEE International Electron Devices Meeting (IEDM) Dig. Tech. Papers, pp. 29.4.1-29.4.4, 2012
    [16] Y.-H. Wang, et.al. “Impact of Stray Field on the Switching Properties of Perpendicular MTJ for Scaled MRAM”, in IEEE International Electron Devices Meeting (IEDM) Dig. Tech. Papers, pp. 29.2.1-29.2.4, 2012
    [17] K. Tsunoda, et.al. “Highly Manufacturable Multi-Level Perpendicular MTJ with a Single Top-Pinned Layer and Multiple Barrier/Free Layers”, in IEEE International Electron Devices Meeting (IEDM) Dig. Tech. Papers, pp. 3.3.1-3.3.4, 2013
    [18] S. Masui, et.al., "Design and applications of ferroelectric nonvolatile SRAM and flip-flop with unlimited read/program cycles and stable recall," in Proceedings of the IEEE Custom Integrated Circuits Conference(CICC), pp.403,406, 21-24 Sept. 2003
    [19] K. Yamaoka, et.al., "A 0.9-V 1T1C SBT-based embedded nonvolatile FeRAM with a reference voltage scheme and multilayer shielded bit-line structure," IEEE Journal of Solid-State Circuits(JSSC), vol.40, no.1, pp.286,292, Jan. 2005
    [20] M. Qazi, et.al., "A 3.4-pJ FeRAM-Enabled D Flip-Flop in 0.13- um CMOS for Nonvolatile Processing in Digital Systems," IEEE Journal of Solid-State Circuits(JSSC), vol.49, no.1, pp.202,211, Jan. 2014
    [21] C.-Y. Wen, J. Li, S. Kim, M. Breitwisch, C. Lam, J. Paramesh, and L.T. Pileggi, “A non-volatile look-up table design using PCM (phase-change memory) cells”, in IEEE Symposium on VLSI Circuits (VLSIC) Dig. Tech. Papers, pp. 302-303, 2011
    [22] M. Rizzi, et.al. “Statistics of set transition in phase change memory (PCM) arrays”, in IEEE International Electron Devices Meeting (IEDM) Dig. Tech. Papers, pp. 29.6.1-29.6.4, 2014
    [23] H. Pozidis, et.al.” Reliable MLC Data Storage and Retention in Phase-Change Memory After Endurance Cycling”, in IEEE International Memory Workshop(IMW), pp. 100-103, 2013
    [24] M.-F. Chang, et.al. “Embedded 1Mb ReRAM in 28nm CMOS with 0.27-to-1V read using swing-sample-and-couple sense amplifier and self-boost-write-termination scheme”, in IEEE International Solid-State Circuits Conference (ISSCC) Dig. Tech. Papers, pp. 332-333, 2014
    [25] M.-F. Chang, et.al. “A Low-Voltage Bulk-Drain-Driven Read Scheme for Sub-0.5 V 4 Mb 65 nm Logic-Process Compatible Embedded Resistive RAM (ReRAM) Macro”, IEEE J. Solid-State Circuits (JSSC), pp. 2250-2259, 2013
    [26] M.-F. Chang, et.al. “Area-Efficient Embedded Resistive RAM (ReRAM) Macros Using Logic-Process Vertical-Parasitic-BJT (VPBJT) Switches and Read-Disturb-Free Temperature-Aware Current-Mode Read Scheme”, IEEE J. Solid-State Circuits (JSSC), pp. 908-916, Apr. 2014
    [27] N. Banno, et.al." A Fast and Low-Voltage Cu Complementary-Atom- Switch 1Mb Array with High-Temperature Retention ", in IEEE Symposium on VLSI Technology (VLSIT) Dig. Tech. Papers, pp. 1- 2 , 2014
    [28] X. Xue, et.al. “A 0.13 µm 8 Mb Logic-Based Cu Si O ReRAM With Self-Adaptive Operation for Yield Enhancement and Power Reduction”, IEEE J. Solid-State Circuits (JSSC), pp. 1315-1322, May. 2013
    [29] M.-F. Chang, et.al. “A High-Speed 7.2-ns Read-Write Random Access 4-Mb Embedded Resistive RAM (ReRAM) Macro Using Process-Variation- Tolerant Current-Mode Read Schemes”, IEEE J. Solid-State Circuits (JSSC), pp. 878-891, Mar. 2013
    [30] L.-Y. Huang, et.al. “ReRAM-based 4T2R nonvolatile TCAM with 7x NVM-stress reduction, and 4x improvement in speed-wordlength- capacity for normally-off instant-on filter-based search engines used in big-data processing”, in IEEE Symposium on VLSI Circuits (VLSIC) Dig. Tech. Papers, pp. 1- 2, 2014
    [31] K. Eshraghian, et.al. “Memristor MOS Content Addressable Memory (MCAM): Hybrid Architecture for Future High Performance Search Engines”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, pp. 1407-1417, Aug. 2010
    [32] S. Matsunaga, et.al. “A 3.14 um2 4T-2MTJ-cell fully parallel TCAM based on nonvolatile logic-in- memory architecture”, in IEEE Symposium on VLSI Circuits (VLSIC) Dig. Tech. Papers, pp. 44- 45, 2012
    [33] J. Li, R.K. Montoye, M. Ishii, and L. Chang, “1 Mb 0.41 µm² 2T-2R Cell Nonvolatile TCAM With Two-Bit Encoding and Clocked Self-Referenced Sensing”, IEEE J. Solid-State Circuits (JSSC), pp. 896-90, Apr. 2014
    [34] W. Wei, et.al., "Design of a Nonvolatile 7T1R SRAM Cell for Instant-on Operation," IEEE Transactions on Nanotechnology, vol.13, no.5, pp.905,916, Sept. 2014
    [35] O. Wataru, et.al. “A 4Mb conductive-bridge resistive memory with 2.3GB/s read-throughput and 216MB/s program-throughput”, in IEEE International Solid-State Circuits Conference (ISSCC) Dig. Tech. Papers, pp. 210-211, 2011
    [36] R. Fackenthal, et.al. “A 16Gb ReRAM with 200MB/s write and 1GB/s read in 27nm technology”, in IEEE International Solid-State Circuits Conference (ISSCC) Dig. Tech. Papers, pp. 338-339, 2014
    [37] T.-Y. Liu, et.al. “A 130.7mm2 2-layer 32Gb ReRAM memory device in 24nm technology”, in IEEE International Solid-State Circuits Conference (ISSCC) Dig. Tech. Papers, pp. 210-211, Sept. 2013
    [38] A. Kawahara, et.al. “An 8Mb multi-layered cross-point ReRAM macro with 443MB/s write throughput”, in IEEE International Solid-State Circuits Conference (ISSCC) Dig. Tech. Papers, pp. 432-434, 2012
    [39] X. P. Wang, et.al." Highly compact 1T-1R architecture (4F2 footprint) involving fully CMOS compatible vertical GAA nano-pillar transistors and oxide-based RRAM cells exhibiting excellent NVM properties and ultra-low power operation ", in IEEE International Electron Devices Meeting (IEDM) Dig. Tech. Papers, pp. 20.6.1- 20.6.4, 2012
    [40] S. Koveshnikov, et.al." Real-time study of switching kinetics in integrated 1T/ HfOx1R RRAM: Intrinsic tunability of set/reset voltage and trade-off with switching time", in IEEE International Electron Devices Meeting (IEDM) Dig. Tech. Papers, pp. 20.4.1- 20.4.3, 2012
    [41] L. Zhang, et.al." High-Drive Current (>1MA/cm2) and Highly Nonlinear (>103) TiN/Amorphous-Silicon/TiN Scalable Bidirectional Selector with Excellent Reliability and Its Variability Impact on the 1S1R Array Performance ", in IEEE International Electron Devices Meeting (IEDM) Dig. Tech. Papers, pp. 6.8.1- 6.8.4, 2014
    [42] H.-Y. Lee, et.al. “Comprehensively study of read disturb immunity and optimal read scheme for high speed HfOx based RRAM with a Ti layer”, in IEEE Symposium on VLSI Technology, Systems and Applications (VLSI-TSA), pp. 132-133, 2010
    [43] M.-C. Hsieh, et.al." Ultra high density 3D via RRAM in pure 28nm CMOS process ", in IEEE International Electron Devices Meeting (IEDM) Dig. Tech. Papers, pp. 10.3.1- 10.3.4, 2013
    [44] Y. Sakotsubo, et.al.," A new approach for improving operating margin of unipolar ReRAM using local minimum of reset voltage ", in IEEE Symposium on VLSI Technology (VLSIT) Dig. Tech. Papers, pp. 87- 88 , 2010
    [45] S. H. Jo, T. Kumar, S. Narayanan, W. D. Lu, and H. Nazarian, " 3D-stackable Crossbar Resistive Memory Based on Field Assisted Superlinear Threshold (FAST) Selector ", in IEEE International Electron Devices Meeting (IEDM) Dig. Tech. Papers, pp. 6.7.1- 6.7.4, 2014
    [46] A. Serb, R. Berdan, A. Khiat, C. Papavassiliou, and T. Prodromakis, “Live demonstration: A versatile, low-cost platform for testing large ReRAM cross-bar arrays”, in International Symposium on Circuits and Systems (ISCAS), pp. 441, 2014
    [47] J. J. Yang, et.al. “Engineering nonlinearity into memristors for passive crossbar applications”, Applied Physics Letters (APL), 2012, Lett. 100
    [48] F. Nardi, S. Balatti, S. Larentis and D. Ielmini ," Complementary switching in metal oxides: Toward diode-less crossbar RRAMs ", in IEEE International Electron Devices Meeting (IEDM) Dig. Tech. Papers, pp. 31.1.1- 31.1.4, 2011
    [49] A. Lee et al., "RRAM-based 7T1R nonvolatile SRAM with 2x reduction in store energy and 94x reduction in restore energy for frequent-off instant-on applications," 2015 Symposium on VLSI Circuits, pp. C76-C77, 2015
    [50] T. Ishizu et al., "SRAM with c-axis aligned crystalline oxide semiconductor: Power leakage reduction technique for microprocessor caches," 2014 IEEE 6th International Memory Workshop (IMW), pp. 1-4, 2014
    [51] Shao Hui Wu et al., "Extremely low power c-axis aligned crystalline In-Ga-Zn-O 60 nm transistor integrated with industry 65 nm Si MOSFET for IoT normally-off CPU application," 2016 IEEE Symposium on VLSI Technology, pp. 1-2, 2016
    [52] T. Atsumi et al., "DRAM Using Crystalline Oxide Semiconductor for Access Transistors and Not Requiring Refresh for More Than Ten Days," 2012 4th IEEE International Memory Workshop, pp. 1-4, 2012
    [53] Jean-Pierre Colinge, Cynthia A. Colinge, “Physics of Semiconductior Devices.” Springer-Verlag, NY, pp. 175-182, 2002.
    [54] https://9to5mac.com/guides/apple-watch-series-3/
    [55] http://www.semtech.com/wireless-rf/internet-of-things/
    [56] http://www.scientechworld.com/education-software-training-and-skill-development/wireless-communication/understanding-wireless-sensor-network
    [57] https://de.ifixit.com/Device/iPhone
    [58] H. Tamura, et al., "Embedded SRAM and Cortex-M0 Core Using a 60-nm Crystalline Oxide Semiconductor," in IEEE Micro, pp. 42-53, Nov.-Dec. 2014.
    [59] W. Wei, et al., "Design of a Nonvolatile 7T1R SRAM Cell for Instant-on Operation," in IEEE Transactions on Nanotechnology, vol. 13, no. 5, pp. 905-916, Sept. 2014.
    [60] http://www.umc.com/2015_japan_forum/pdf/20150527_shunpei_yamazaki_eng.pdf
    [61] D. Matsubayashi et al., "20-nm-Node trench-gate-self-aligned crystalline In-Ga-Zn-Oxide FET with high frequency and low off-state current," 2015 IEEE International Electron Devices Meeting (IEDM), pp. 6.5.1-6.5.4, 2015

    QR CODE