簡易檢索 / 詳目顯示

研究生: 楊凱鈞
Yang, Kai-Jun
論文名稱: 可撓式基板上製備異質接面結構之UV光感測元件
UV light sensing element of a heterojunction structure is prepared on flexible substrate
指導教授: 林志明
Lin, Chih-Ming
口試委員: 林彥谷
Lin, Yan-Gu
李信義
Li, Xin-Yi
學位類別: 碩士
Master
系所名稱: 南大校區系所調整院務中心 - 應用科學系所
Department of Applied Science
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 57
中文關鍵詞: 氧化鋅水熱法可撓式基板
外文關鍵詞: Zinc oxide, Hydrothermal, Flexible substrate
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 藉由水熱法(hydrothermal method)成長於可撓式基板上之氧化鋅結構,搭配P型半導體材料,如:氧化亞銅、氧化鎳等材料,製備出異質接面結構之UV光感測元件。
    使用低溫(70℃~90℃)製程、製程時間短(1-3hr)於可撓式基板上成長氧化鋅結構,透過紫外線/可見光分光光譜儀(Ultraviolet–visible spectroscopy, UV-vis)、X-射線繞射分析(X-ray Diffraction, XRD)、以及從掃描電子顯微鏡(Scanning Ele ctron Microscope, SEM),顯示長約為2.5µm、寬度約為400nm,深寬比(Aspect ratio)為6且為完整的六方晶系(hexagonal crystal system)的結構。
    為了降低成本,先選用投影片做為基板來探討以水熱法成長氧化鋅奈米柱結構,探討改變製程參數對氧化鋅結構之影響,其中改變前軀物濃度(硝酸鋅以及HMTA),則影響晶柱密度以及成長速度,改變溫度,則影響氧化鋅長度,改變製程時間,則會影響氧化鋅之截面積寬度。最後選擇前軀物濃度為0.05M、溫度則是80℃、製程時間1小時,所製程出氧化鋅為最符合我們需求之參數。
    為了製備出異質接面結構之UV光感測元件,我們選用Cu2O做為P型半導體材料,希望達到低成本並且不需要使用到複雜的機台而選擇用溶膠凝膠法[7],但是目前製程方法皆需要使用高溫爐高溫烘烤,投影片最高耐溫為140℃,因此選擇使用銅做為本實驗之基板,以電化學氧化製備Cu2O於基板上,再使用水熱成長氧化鋅奈米結構,完成製備出異質接面結構之UV光感測元件。


    The zinc oxide structure is grown on a flexible substrate by hydrothermal method , and the UV light sensor of the heterojunction structure is prepared by using p-type semiconductor materials such as cuprous oxide and nickel oxide. ZnO was grown on a flexible substrate using a low temperature (70 ° C to 90 ° C) for a short process (1-3 hours) passed through an ultraviolet / visible spectrophotometer (UV-Vis)、X - ray analysis (X-ray Diffraction, XRD), and a scanning electron microscope(SEM) showing a length of about 2.5μm, a width of about 400nm, an Aspect ratio of 6 and a complete hexagonal Crystal structure structure. In order to reduce the cost, the effect of changing the process parameters on the structure of zinc oxide was discussed by using the projection film as the substrate to study the effect of changing the precursor concentration (zinc nitrate and HMTA) Crystal column density and growth rate, change the temperature, it affects the length of zinc oxide, change the process time, it will affect the cross-sectional area of zinc oxide width. Finally, the choice of precursor concentration of 0.05M, the temperature is 80 ℃, the process time of 1 hour, the process of zinc oxide is the most in line with our requirements of the parameters.
    In order to prepare the UV light sensing element of the heterojunction structure, we chose Cu2O as the P-type semiconductor material, hoping to low cost and do not need to use the complex machine to choose the sol-gel method [7], but at present process methods need to use high-temperature furnace baking high temperature, the maximum temperature of the projection film is 140 ℃, so choose to use copper as the substrate of this experiment, electrochemical oxidation of Cu2O on the substrate, and then the use of hydrothermal growth of zinc oxide nano Structure, to complete the preparation of heterogeneous interface structure of the UV light sensor.

    摘要 目錄 第一章----------------1 第二章----------------3 第三章----------------18 第四章----------------34 第五章----------------52 第六章----------------53 第七章----------------54

    [1] Q.Li, V. Kumar, Y. Li, H. Zhang, T.J Marks R.P.H Chang,Chemistry of Materials 17 (2005) 1001.
    [2] Z.L. Wang, Materials Science and Engineering: R: Reports 64 (2009) 33.
    [3] L. vayssieres, Advanced Materials 15(2003) 464
    [4] Bin Liu; Hua Chun Zeng, Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm, J. Am. Chem. Soc, 2003, 125 (15), pp 4430–4431.
    [5] TanmoyMajumder; Suvra Prakash Mondal, Advantages of nitrogen-doped graphene quantum dots as a green sensitizer with ZnOnanorod based photoanodes for solar energy conversion, Journal of Electroanalytical Chemistry, 769, 2016, 48 –52.
    [6]U.S.Geological Survey Open-File Report 01-041”A Laboratory Manual for X-Ray Powder Diffraction”
    [7] LL Hench; JK West, The Sol-Gel Process, Chemical reviews-ACS Publications, 1990.
    [8] T.T hongtem, S. Jattukul, A. Phuruangrat, S. Thongtem, Journal of Alloys and Compounds 491 (2010) 654
    [9] J. Zhang, Sun, Yin, Su, Liao, Yan, Chemistry of Materials 14 (2002)4172.
    [10]D. Jezequel,J. Guenot, N . Jouini, F. Fievet, Submicrometer zinc oxide particles: Elaboration in polyolmedium and morphological characteristics, Journal of Materials Research, vol.10,1995,pp.77-83
    [11]C. L. Carnes, K. J. Klabunde, Synthesis, isolation, and chemical reactivity studies of nanocrystalline zinc oxide ,Langmuir, vol. 16, 2000, pp.3764-3772
    [12]T. Trindade, J.D. Pedrosa De Jesus. P.O'Brien,Preparation of zinc oxide and zinc sulfide powders by controlled precipitation from aqueous solution, Journal of Materials Chemistru, vol. 4,1994,pp. 1611-1617
    [13]H.Z.Zhang,X.C.Sun,R.M.Wang,D.P.Yu,Journal of Crystal Growth 269(2004) 464-471
    [14]A. Kompany; H. A. Rahnamaye Aliabad; S. M. Hosseini, Effect of substituted IIIB transition metals on electronic properties of indium oxide by first-principles calculations, phys. Stat sol. (b), 2007, 224, 2, 619-628
    [15] Y. Natsume, H Sakatau, “Zinc oxide films prepared by sol-gel spin-coating,” Thin Solid Films, vol. 372,2000.pp.30-36
    [16] Z. Fang, Y. Wang, X. Peng, X. Liu and C. Zhen, “Structural and optical properties of ZnO films grown on the AAO templates,” Mater. Lett., vol.57,pp.4187-4190,2003
    [17]D. R. Vij; N. Singh, Luminescence and Related Properties of II-VI Semiconductors, Nova Science Publishers, N. Y., 1998.
    [18] X. T. Zhang., J. Lumin, 2002, 99, 149.
    [19] K. Vanheusden et al., Mechanisms behind green photoluminescence in ZnO phosphor powders, J. Appl. Phys., 1996, 79, 7983.
    [20] 莊東漢,材料破損分析,台灣台北,五南圖書出版股份有限公司,2007,第一版
    [21] M. Salema; S. Akirb; T. Ghribc; K. Daoudid; M. Gaidi, Fe-doping effect on the photoelectrochemical properties enhancement of ZnO films, Journal of Alloys and Compounds, 2016, 107–113.
    [22]T.M. Laher, L.E. McCurry, and G. Mamantov, Anal. Chem,1985,57, 500.
    [23] M.R. Kalantary and D.R. Gabe, J. Mater. Sci, 1995, 30, 4515
    [24]Kun Ho Kim, Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering, Journal of Applied Physics, 1997, 81, 7764.
    [25]X. W. Sun, Optical properties of epitaxially grown zinc oxide films on sapphire by pulsed laser deposition, Journal of Applied Physics, 1999, 86, 408.
    [26]S. O. Kucheyev; J. S. Williams; C. Jagadish; J. Zou; Cheryl Evans; A. J. Nelson; A. V. Hamza, Ion-beam-produced structural defects in ZnO, Phys. Rev. B, 2003, 67, 094115.
    [27]P. F. Carcia; R. S. McLean; M. H. Reilly, High-performance ZnOZnO thin-film transistors on gate dielectrics grown by atomic layer deposition, Appl. Phys. Lett, 2006, 88, 123509.
    [28] A. Sarkar, Studies on electron transport properties and the Burstein-Moss shift in indium-doped ZnO films, Thin Solid Films, 1991, 204, 255-264.

    QR CODE