研究生: |
詹繕源 Chan, Shan-Yuan |
---|---|
論文名稱: |
應用於氧氣還原反應之磷摻雜石墨烯的合成與鑑定 Synthesis and Characterization of Phosphorus-doped Reduced Graphene Oxide for the Oxygen Reduction Reaction Applications |
指導教授: |
胡啟章
Hu, Chi-Chang |
口試委員: |
馬振基
Ma, Chen-Chi 劉英麟 Liu, Ying-Ling |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 165 |
中文關鍵詞: | 磷摻雜石墨烯 、氧氣還原反應 、過氧化氫生成 |
外文關鍵詞: | Phosporus-doped reduced graphene oxide (P-rGO), Oxygen reduction reaction, H2O2 generation |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用氧化石墨烯(Graphene oxide, GO)與三苯基磷(Triphenylphosphine, TPP)透過水熱法及高溫爐還原形成磷摻雜石墨烯(PG),將之應用於氧氣還原反應(Oxygen reduction reaction, ORR)的研究。並利用旋轉環-盤電極(Rotating ring-disk electrode, RRDE)計算電子轉移數,藉此了解ORR的機制。
研究分為兩部分。第一部分陡升陡降途徑實驗 (PSA/D)中,控制(A).三苯基磷(TPP)比例,(C).微波功率,(E).燒結溫度,(F).CNT,有效控制電子轉移數從 3.91至2.88,並命名為PG(3.91)、PG(3.75)、PG(3.51)、PG(3.13)、PG(2.88)。在材料鑑定上,以 XPS 分析磷參雜結構,及透過 SEM觀察形態,並藉由拉曼光譜及XRD分析 P-rGO的缺陷程度,且藉由BET(比表面積儀)證實PG(3.91)擁有最高的表面積453.2 m2/g,證明比表面積的提升與電子轉移數有正相關。
第二部分利用PG(3.91)作為鋅空氣電池之應用,其最大功率密度118.67mW cm-2出現在電流密度221 mA cm-2,其表現比起許多先前的文獻都還要優異。本研究也利用PG(2.88)在0V (vs. RHE) 最高效率操作電位下一小時,產生H2O2濃度(29.4 mg L-1)。上述結果證明了P-rGO可成為鋅空氣電池陰極及產生過氧化氫反應的催化劑。
This thesis mainly focuses on the microwave and annealing synthesis and fabrication of Phosphorus-doped reduced graphene oxide (P-rGO) and its application on oxygen reduction reaction (ORR). The rotating ring-disk electrode (RRDE) voltammetry was applied to calculate electron transfer numbers to study ORR.
In the first part, 26-2 factorial design of experiments and path of steepest ascent/descent (PSA/PSD) experiments were applied , six factors including: (A). triphenylphosphine ratio, (B). annealing temperature(°C), (C). microwave power(W) ,(D) microwave time(min), (E). annealing temperature and (F). CNT concentration were controlled in order to obtain the optimal values of electron transfer number for ORR. The highest electron transfer number was 3.91, whereas the lowest one was near 2.88. The samples were assigned as PG(3.91), PG(3.75), PG(3.51), PG(3.13), PG(2.88).
The structures and distributions of phosphorus doped onto r-GO were examined by the x-ray photoelectron spectroscopic (XPS) and EDX analysis. The layer-by-layer morphology and the high degree of defects of P-rGO were characterized by scanning electron microscopy (SEM) , and Raman spectroscopy.
In the second part, PG (3.91) was utilized for zinc air battery. The maxium power density (118.67mW cm-2) occurs at current density (221 mA cm-2). Moreover, PG (2.88) was used for H2O2 generation. The maxium H2O2 concentration (29.4 mg L-1) appears at 0V (vs. RHE) operating for 1hr. These results confirm P-rGO can be the excellent catalyst for zinc air battery and H2O2 generation.
參考文獻
[1] D. Pletcher, A first course in electrode processes, Royal Society of Chemistry, 2009.
[2] D.R. Crow, Principles and applications of electrochemistry, CRC Press, 1994.
[3] A.J. Bard, L.R. Faulkner, Electrochemical methods: fundamentals and applications, Wiley New York, 1980.
[4] 胡啟章, 電化學原理與方法, 五南圖書出版股份有限公司, 2002.
[5] D. Pletcher, F.C. Walsh, Industrial electrochemistry, Springer, 1990.
[6] D. Galizzioli, F. Tantardini, S. Trasatti, Journal of Applied Electrochemistry, 5 (1975) 203-214.
[7] A.M. Couper, D. Pletcher, F.C. Walsh, Chemical Reviews, 90 (1990) 837-865.
[8] Power one: Hearing Aid Batteries. Powerone-batteries.com. Retrieved on 2012-09-30.
[9] Battery types. thermoanalytics. Retrieved on 2012-09-30.
[10]何為空氣電池? | 綠能趨勢網EnergyTrendhttp://www.energytrend.com.tw/knowledge/20150623-11533.html
[11] Schröder, D., Krewer, U, International Congress on Energy (2011)
[12]產業價值鏈資訊平台> 能源元件產業鏈簡介 http://ic.tpex.org.tw/introduce.php?ic=E000
[13] 特斯拉成功申请多项專利 金屬空氣電池能否终结“續行焦慮”? http://www.feelcars.com/67267.html
[14] 鋅空氣電池和下一代矽鋰電池研究應用
https://kknews.cc/zh-tw/news/ov88em.html
[15]鋅空氣電池概念迎利好http://news.sina.com.tw/article/20140821/13167160.html
[16]太平洋瓦斯電力公司計劃測試飛輪、鋅空氣電池能源儲存http://www.taiwanbattery.org.tw/News/More?id=4728
[17] E.P. Ambrosio, C. Francia, C. Gerbaldi, N. Penazzi, P. Spinelli, M. Manzoli, G. Ghiotti, Journal of Applied Electrochemistry, 38 (2008) 1019-1027.
[18] J. Suntivich, H.A. Gasteiger, N. Yabuuchi, H. Nakanishi, J.B. Goodenough, Y. Shao-Horn, Nat Chem, 3 (2011) 546-550.
[19] P.-C. Li, C.-C. Hu, T.-C. Lee, W.-S. Chang, T.H. Wang, Journal of Power Sources, 269 (2014) 88-97.
[20] E. Peralta, R. Natividad, G. Roa, R. Marin, R. Romero, T. Pavon, Sustain. Environ. Res., 23 (2013) 259-266.
[21] N. Guillet, L. Roué, S. Marcotte, D. Villers, J.P. Dodelet, N. Chhim,S.T. Vin, Journal of Applied Electrochemistry, 36 (2006) 863-870.
[22] C.E. La Rotta, E. D'elia, E.P. Bon, Electronic Journal of Biotechnology, 10 (2007) 24-36.
[23] S.-H. Cho, A. Jang, P.L. Bishop, S.-H. Moon, Journal of Hazardous Materials, 175 (2010) 253-257.
[24] M.H.M.T. Assumpção, R.F.B. De Souza, D.C. Rascio, J.C.M. Silva, M.L. Calegaro, I. Gaubeur, T.R.L.C. Paixão, P. Hammer, M.R.V. Lanza, M.C. Santos, Carbon, 49 (2011) 2842-2851.
[25] C. Song, J. Zhang, Electrocatalytic Oxygen Reduction Reaction, in: J. Zhang (Ed.) PEM Fuel Cell Electrocatalysts and Catalyst Layers, Springer London, 2008, pp. 89-134.
[26] Z. Peng, H. Yang, Nano Today, 4 (2009) 143-164.
[27] Bayram, E., G. Yilmaz, and S. Mukerjee, A solution-based procedure for synthesis of nitrogen doped graphene as an efficient electrocatalyst for oxygen reduction reactions in acidic and alkaline electrolytes. Applied Catalysis B: Environmental, 2016. 192: p. 26-34.
[28] Some, S., et al., Highly air-stable phosphorus-doped n-type graphene field-effect transistors. Adv Mater, 2012. 24(40): p. 5481-6.
[29] Wen, Y., et al., Synthesis of phosphorus-doped graphene and its wide potential window in aqueous supercapacitors. Chemistry, 2015. 21(1): p. 80-5.
[30] Xiao, Z., et al., Edge-selectively phosphorus-doped few-layer graphene as an efficient metal-free electrocatalyst for the oxygen evolution reaction. Chem Commun (Camb), 2016. 52(88): p. 13008-13011.
[31] Zhang, C., et al., Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries. Adv Mater, 2013. 25(35): p. 4932-7.
[32] Zhang, X., et al., The mechanisms of oxygen reduction reaction on phosphorus doped graphene: A first-principles study. Journal of Power Sources, 2015. 276: p. 222-229.
[33] Xu, G., et al., Porous nitrogen and phosphorus co-doped carbon nanofiber networks for high performance electrical double layer capacitors. J. Mater. Chem. A, 2015. 3(46): p. 23268-23273.
[34] https://angstronmaterials.com/
[35] B. Wang, Journal of Power Sources, 152 (2005) 1-15
[36] K.S. Novoselov, A.K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, A. Firsov, science, 306 (2004) 666-669.
[37] S.J. Lee, S.I. Pyun, S.K. Lee, S.J.L. Kang, Isr. J. Chem., 48 (2008) 215-228.
[38] O. Antoine, R. Durand, Journal of Applied Electrochemistry, 30 (2000) 839-844.
[39] G. Box, W. Hunter, J. Hunter, John Willey, New York, (1978).
[40] http://www.minitab.com.tw/product/minitab/features_doe.php#實驗設計定義
[41] D.C. Montgomery, Design and Analysis of Experiments, 8th Edition, John Wiley & Sons, Incorporated, 2012.
[42] A.K. Geim et al.,The rise of graphene. Nat Mater,2007. 6(3): p. 183-191.
[43] 馬振基,奈米材料科技原理與應用, 全華圖書股份有限公司, 2016
[44] Wallace,P.R.,The Band Theory of Graphite. Physical Review,1947. 71(9): p. 622-634.
[45] McClure,J.W.,Diamagnetism of Graphite. Physical Review,1956. 104(3): p. 666-671.
[46] K.-H. Chang, Y.-F. Lee, C.-C. Hu, C.-I. Chang, C.-L. Liu, Y.-L.Yang, Chem. Commun., 46 (2010) 7957-7959.
[47] S.-M. Paek, E. Yoo, I. Honma, Nano letters, 9 (2008) 72-75.
[48] C. Lee et al.,Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science,2008. 321: p. 38.
[49] Wallace,P.R.,The Band Theory of Graphite. Physical Review,1947. 71(9): p. 622-634.
[50] W.A de Heer et al.,Epitaxial graphene. Solid State Communications,2007. 143(1-2): p. 92-100.
[51] Li,X. et al.,Highly conducting graphene sheets and Langmuir Blodgett films. Nat Nano,2008. 3(9): p. 538-542.
[52] L.Z. Gomez et al.,Synthesis,Synthesis,Transfer,and Devices of Single- and Few-Layer Graphene by Chemical Vapor Deposition. IEEE Trans. Nanotechnol.,2008. 8: p. 135-138.
[53] D.R. Dreyer et al.,The chemistry of graphene oxide,Chem. Soc. Rev.,2010. 39. p 228-240
[54] S. Stankovich et al.,Graphene-based composites materials,NATURE. 2006. 442. p 282-286
[55] H.A. Becerril et al.,Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors. ACS Nano,2008. 2(3): p. 463-470.
[56] Comptom et al.,Electrically Conductive ‘‘Alkylated’’ Graphene Paper via Chemical Reduction of Amine-Functionalized Graphene Oxide Paper. Adv. Mater. 2009. 21. p 1-5
[57] F. Xiaobin et al.,Deoxygenation of Exfoliated Graphite Oxide under Alkaline Conditions: A Green Route to Graphene Preparation,Adv. Mater. 2008. 20. p 4490-4493
[58] Yao,N. and V. Lordi,Young's modulus of single-walled carbon nanotubes. Journal of Applied Physics,1998. 84(4): p. 1939-1943.
[59] Treacy,M.M.J.,T.W. Ebbesen,and J.M. Gibson,Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature,1996. 381(6584): p. 678-680.
[60] A.K. Geim et al.,Electric Field Effect in Atomically Thin Carbon Films. Science,2004. 306(5696): p. 666-669.
[61] I. Morcos, E. Yeager, Electrochimica Acta, 15 (1970) 953-975.
[62] Zhang, X., et al., The mechanisms of oxygen reduction reaction on phosphorus doped graphene: A first-principles study. Journal of Power Sources, 2015. 276: p. 222-229.
[63] Xiao, Z., et al., Edge-selectively phosphorus-doped few-layer graphene as an efficient metal-free electrocatalyst for the oxygen evolution reaction. Chem Commun (Camb), 2016. 52(88): p. 13008-13011.
[64] Shumba, M. and T. Nyokong, Development of nanocomposites of phosphorus-nitrogen co-doped graphene oxide nanosheets and nanosized cobalt phthalocyanines for electrocatalysis. Electrochimica Acta, 2016. 213: p. 529-539.
[65] Li, Y., et al., Polypyrrole-modified graphene sheet nanocomposites as new efficient materials for supercapacitors. Carbon, 2016. 105: p. 510-520.
[66] Bayram, E., G. Yilmaz, and S. Mukerjee, A solution-based procedure for synthesis of nitrogen doped graphene as an efficient electrocatalyst for oxygen reduction reactions in acidic and alkaline electrolytes. Applied Catalysis B: Environmental, 2016. 192: p. 26-34.
[67] Zhang, J., et al., A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat Nanotechnol, 2015. 10(5): p. 444-52.
[68] Yang, Z., et al., Preparation of 3D graphene-based architectures and their applications in supercapacitors. Progress in Natural Science: Materials International, 2015. 25(6): p. 554-562.
[69] Xu, G., et al., Porous nitrogen and phosphorus co-doped carbon nanofiber networks for high performance electrical double layer capacitors. J. Mater. Chem. A, 2015. 3(46): p. 23268-23273.
[70] Wu, J., et al., Ternary doping of phosphorus, nitrogen, and sulfur into porous carbon for enhancing electrocatalytic oxygen reduction. Carbon, 2015. 92: p. 327-338.
[71] Wu, J., et al., Synthesis of phosphorus-doped carbon hollow spheres as efficient metal-free electrocatalysts for oxygen reduction. Carbon, 2015. 82: p. 562-571.
[72] Wen, Y., et al., Synthesis of phosphorus-doped graphene and its wide potential window in aqueous supercapacitors. Chemistry, 2015. 21(1): p. 80-5.
[73] Liu, Y., et al., The high-performance and mechanism of P-doped activated carbon as a catalyst for air-cathode microbial fuel cells. J. Mater. Chem. A, 2015. 3(42): p. 21149-21158.
[74] Li, R., Z. Wei, and X. Gou, Nitrogen and Phosphorus Dual-Doped Graphene/Carbon Nanosheets as Bifunctional Electrocatalysts for Oxygen Reduction and Evolution. ACS Catalysis, 2015. 5(7): p. 4133-4142.
[75] Hu, C.C., et al., Anodic composite deposition of RuO(2)/reduced graphene oxide/carbon nanotube for advanced supercapacitors. Nanotechnology, 2015. 26(27): p. 274004.
[76] Duan, X., et al., Effects of nitrogen-, boron-, and phosphorus-doping or codoping on metal-free graphene catalysis. Catalysis Today, 2015. 249: p. 184-191.
[77] Zhang, C., et al., Synthesis of Phosphorus-Doped Graphene and its Multifunctional Applications for Oxygen Reduction Reaction and Lithium Ion Batteries. Adv. Mater.2013, 25, 4932−4937.
[78] Poh, H., et al., Concurrent Phosphorus Doping and Reduction of Graphene Oxide. Eur. J.2014, 20, 4284−4291.
[79] Duan, J., et al., Heteroatom-Doped Graphene-Based Materials for Energy-Relevant Electrocatalytic Processes. ACS Catalysis, 2015. 5(9): p. 5207-5234.
[80] Yang, D.-S., et al., Highly efficient metal-free phosphorus-doped platelet ordered mesoporous carbon for electrocatalytic oxygen reduction. Carbon, 2014. 67: p. 736-743.
[81] Wang, Z., et al., Phosphorus-doped reduced graphene oxide as an electrocatalyst counter electrode in dye-sensitized solar cells. Journal of Power Sources, 2014. 263: p. 246-251.
[82] Yang, D.S., et al., Phosphorus-doped ordered mesoporous carbons with different lengths as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media. J Am Chem Soc, 2012. 134(39): p. 16127-30.
[83] Liu, Z.W., et al., Phosphorus-doped graphite layers with high electrocatalytic activity for the O2 reduction in an alkaline medium. Angew Chem Int Ed Engl, 2011. 50(14): p. 3257-61.
[84] Liu, Z., et al., Novel phosphorus-doped multiwalled nanotubes with high electrocatalytic activity for O2 reduction in alkaline medium. Catalysis Communications, 2011. 16(1): p. 35-38.
[85] Chang, C.-M. and Y.-L. Liu, Functionalization of multi-walled carbon nanotubes with furan and maleimide compounds through Diels–Alder cycloaddition. Carbon, 2009. 47(13): p. 3041-3049.
[86] A. Pandolfo, A. Hollenkamp, Journal of power sources, 157 (2006) 11-27.
[87] Y. Shao, S. Zhang, M.H. Engelhard, G. Li, G. Shao, Y. Wang, J. Liu,I.A. Aksay, Y. Lin, Journal of Materials Chemistry, 20 (2010) 7491-7496.
[88] L. Qu, Y. Liu, J.-B. Baek, L. Dai, ACS nano, 4 (2010) 1321-1326.
[89] Xiaowan B., et al., Theoretical insights on the reaction pathways for oxygen reduction reaction on phosphorus doped graphene. Carbon, (2016) 214-223
[90] H. Wendt, Electrochimica Acta, 29 (1984) 1513-1525.
[91] http://www.mse.nthu.edu.tw/equip2/property.php?Sn=94
[92] Xiaowan B., et al., Theoretical insights on the reaction pathways for oxygen reduction reaction on phosphorus doped graphene. Carbon, (2016) 214-223
[93] C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, A. Govindaraj, Angewandte Chemie International Edition, 48 (2009) 7752-7777.
[94] http://www.nscric.nthu.edu.tw/
[95] C.L. Liu, C.C. Hu, S.H. Wu, T.H. Wu, Journal of the Electrochemical Society, 160 (2013) H547-H552.
[96] G.E.P. Box, W.G. Hunter, J. Roy, Statist. Soc., B13(1951).
[97] 溫添進, 林世民, 化工 37 卷 2 期 (1990) 23-33.
[98] A.C. Ferrari, Solid State Communications, 143 (2007) 47-57.
[99] 李仕明.馬振基(2014), 氮摻雜石墨烯應用於超高電容器與生物感測器之電極材料的製備與性質研究.
[100] https://zh.wikipedia.org/wiki/%E7%94%B2%E5%9F%BA%E8%97
[101] IUPAC. “Manual of Symbols and Terminology, Appendix 2, Part 1, Colloid and Surface Chemistry”, Pure Appl. Chem., vol. 31,1972,pp.578
[102] Li, P. C.; Hu, C. C.; Lee, T. C.; Chang, W. S.; Wang, T. H. J. Power Sources (2014) 269, 88– 97
[103] Z.Y. Chen, Y.N. Li, L.L. Lei, S.J. Bao, M.Q. Wang, H.L. Z.L. Zhao, and Mao-wen Xu ,CatalysisScience & Technology (2017)
[104] T.F. Wu, W.C. Lin, Y.C. Hsiao, C.H. Su, C.C. Hu, C.P. Huang, R. Muniyandi, Journal of the Electrochemical Society, 161 (2014)
H762-H769.
[105] Y.B. Xie, X.Z. Li, Materials Chemistry and Physics, 95 (2006) 39-50.
[106] Mekan O., et al., Chemical Vapor Deposition of Phosphorus- and Boron-Doped Graphene Using Phenyl-Containing Molecules. J Nanosci Nanotechnol. 2015 Jul;15(7):4883-6.
[107] Li X., et al., Three Dimensional P-doped Graphene Synthesized by Eco-Friendly Chemical Vapor Deposition for Oxygen Reduction Reactions. J Nanosci Nanotechnol. 2016 Jun;16(6):6216-22.