簡易檢索 / 詳目顯示

研究生: 林俊安
Lin, Chun-An
論文名稱: 高介電係數閘極氧化層與砷化銦鎵之介面缺陷電性分析研究
Electrical defect analysis of InxGa1-xAs MOS devices passivated by ALD and MBE high-k dielectrics
指導教授: 郭瑞年
Kwo, Raynien
口試委員: 洪銘輝
林登松
陳正中
白偉武
劉致為
陳振芳
牟中瑜
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 136
中文關鍵詞: 高介電材料砷化銦鎵場效電晶體界面缺陷密度氧化層缺陷分子束磊晶原子層沉積界面鈍化
外文關鍵詞: high-k dielectric materials, indium gallium arsenide, germanium, field effect transistors, interface trap density, oxide bulk trap, molecular beam epitaxy, atomic layer deposition, surface passivation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來於高介電材料和砷化銦鎵等高載子遷移率通道的金屬半導體(金氧半)場效電晶體之研究已經變得相當重要,尤其是在互補式金氧半元件的高速低耗能應用方面。一個有低缺陷密度且可有效地控制的高介電材料和砷化銦鎵的界面層是未來三五族半導體能被應用於現今以矽為主的元件的一個重要因素。本工作最重要的貢獻是利用多種電性量測的方法,如電荷幫浦的電流分析、准靜態電容電壓量測與計算、變溫的電導電壓量測分析以及深部能階暫態頻譜分析,有系統地得到一致且合理的能帶缺陷密度圖,並且製作出元件來印證他們對於元件工作表現的重要關聯。
    高介電材料和砷化銦鎵的異質結構能有一個低密度且平坦的界面能帶缺陷圖,可以使我們有效地操控砷化銦鎵元件。利用分子束磊晶方式先成長砷化銦鎵磊晶層,再接續成長氧化鎵氧化釓的稀土氧化物於砷化銦鎵之上,我們除成功製作出電子元件,且也量測得到一個平坦且低密度的界面能帶缺陷密度圖。此外,我們也成功製作出單純成長氧化釓於砷化銦之上的金氧半元件,並量測獲得此界面能帶缺陷密度圖。這些結果皆可看出界面能帶缺陷密度圖對於其元件工作表現的重要影響。
    除了利用分子束磊晶方式在超高真空環境下成長高介電材料外,基於元件成長製程的靈活性及成本考量,原子層沉積高介電材料接受到更多關注。常用的樣品製作流程是先利用化學製品將砷化銦鎵的表面鈍化(因砷化銦鎵已暴露於大氣中),而後再成長原子層沉積高介電材料於其上;然而此流程會限制爾後在製作元件時元件本身的熱力學穩定性。我們提議的流程是先利用分子束磊晶方式先成長砷化銦鎵磊晶層,再接續於超高真空環境下直接成長原子層沉積高介電材料,如氧化鉿或氧化鋁;此原件經過測試可有更高的熱力學穩定性,且元件的界面能帶缺陷密度更低於前者所製作出的樣品,說明了這是一個更有效的元件成長製作流程。從界面能帶缺陷密度圖的分析和X射線光電子能譜的相互關聯中,我們推測在砷化銦鎵下半部的能隙中,其界面缺陷密度的大小和多餘的砷相關鍵結有密切關係。


    Recent studies on MOS field-effect transistors (MOSFETs) using high-k dielectrics on InGaAs have become essential to high-speed low-power logic applications for keeping down scaling of complementary metal-oxide-semiconductor technologies. A well controlled high-k/InGaAs interface with low interface trap densities (Dit’s) is one of the key factors for the III-V implementation to the present Si-based devices. The major achievement in this work is to obtain consistent and valid energy distribution of Dit’s [Dit(E)] by various electrical techniques, and to address its impact on MOSFETs device performance. Moreover, a speculation about possible defect states responsible for high Dit’s within the energy band gap is proposed and under discussion.
    A flat energy distribution of Dit’s within the InxGa1-xAs band gap, as the U shape spectrum for SiO2/Si, is essential for effective control of the Fermi level to efficiently manipulate the device. We have performed a nearly flat Dit distribution with no discernible peak near the mid-gap region for In0.2Ga0.8As passivated by the molecular-beam-epitaxy (MBE) deposited Ga2O3(Gd2O3) [GGO] rare-earth oxide. (kGGO~14, kSi~3.9) Moreover, InAs MOS devices were also demonstrated to perform the effective passivation of Gd2O3 on III-Vs since Gd2O3 is known to be the key dielectric layer formed near the interface with InGaAs, when the mixed oxide GGO was evaporated from a Gd3Ga5O12 garnet source. Both the fabrication of depletion- and enhancement-mode MOSFETs enables the significance of obtained Dit results on the device performance.
    Besides the high-k GGO deposited by the MBE approach under an ultra high vacuum environment, atomic-layer-deposited (ALD) high-k dielectrics have received much attention with the advantages of uniformity and conformality for the fabrication process flexibility. Here we directly deposited ALD oxides (HfO2, Al2O3) on pristine InxGa1-xAs (x=0.2, 0.53) surface without any chemical surface treatments, and electrical interface characterizations showed that the mid-gap and lower-half-band-gap Dit’s are obviously lower for ALD-HfO2 than Al2O3. Note that no additional Arsenic related states were detected (below the level of in-situ Xray photoemission spectroscopy detection) in the former. Nevertheless, the Dit(E) for ALD-HfO2 on In0.2Ga0.8As still exhibits a small mid-gap peak feature, implying other defect states, such as Gallium related states, may also contribute to the mid-gap Dit’s. For ALD-HfO2 on In0.53Ga0.47As with lower Gallium content, the Dit(E) shows a downward profile from the valence band to the conduction band with no mid-gap peak. The results in the so-called in-situ ALD approach appreciably compare well with those prevalent cases utilizing the HCl or (NH4)2S treatment on In0.53Ga0.47As prior to the high-kdeposition, manifesting the excellent high-k/InxGa1-xAs interface by the promising in-situ approach.

    Abstract (摘要) Abstract Acknowledgement (致謝) Contents List of Figures List of Tables Chapter 1- Introduction 1.1 Motivation 1.1.1 Driving force for transistor development 1.1.2 Down-scaling limit for Si-based device 1.2 High- dielectric and metal gate application 1.3 Replacement with high carrier mobility channel (InxGa1-xAs, Ge) 1.4 Importance for high-/semiconductor interface Chapter 2- Experiment 2.1 Growth of epi-layers and deposition of dielectrics – Multi-functional ultra-high vacuum (UHV) system with both molecular beam epitaxy (MBE) and atomic layer deposition (ALD) technique 2.2 Electrical characterizations for interfacial density of states (Dit) 2.2.1 Charge pumping (CP) technique 2.2.2 Temperature-dependent conductance-voltage (GV) method 2.2.3 Quasi-static capacitance-voltage (QS-CV) calculation 2.2.4 Deep level transient spectroscopy (DLTS) 2.3 Comparison among CP technique, GV, QS-CV method and DLTS Chapter 3- Attainment of low interfacial trap density absent of a large mid-gap peak in In0.2Ga0.8As by (Ga2O3)Gd2O3 passivation 3.1 Introduction – Mid-gap Dit peak feature 3.2 Film growth for MBE-GGO on In0.2Ga0.8As 3.3 Device fabrication 3.4 Result and discussion 3.4.1 Dit(E) by GV method and QS-CV calculation 3.4.2 Depletion-mode In0.2Ga0.8As MOSFET 3.4.3 Enhancement-mode In0.2Ga0.8As MOSFET 3.5 Dit impact on MOSFETs performance 3.6 Conclusion Chapter 4- InAs MOS devices passivated with molecular beam epitaxy-grown Gd2O3 dielectrics 4.1 Introduction – Challenges for InAs MOS 4.2 Film growth for MBE-Gd2O3 on InAs 4.3 Device fabrication 4.4 Result and discussion 4.4.1 Energy band parameters 4.4.2 Depletion-mode InAs MOSFET 4.4.3 Dit(E) by GV method 4.5 Conclusion Chapter 5- Passivation of in-situ atomic-layer-deposited oxides (Al2O3 and HfO2) on In0.2Ga0.8As and In0.53Ga0.47As 5.1 Introduction - Why in-situ 5.2 Film growth for in-situ ALD-oxides (Al2O3 and HfO2) on In0.2Ga0.8As and In0.53Ga0.47As 5.3 Device fabrication 5.4 Result and discussion 5.4.1 ALD-oxides/In0.2Ga0.8As - Dit(E) by QS-CV calculation 5.4.2 Correlation of Dit(E) and XPS for in-situ ALD-oxides/In0.2Ga0.8As 5.4.3 ALD-oxides/In0.53Ga0.47As - Dit(E) by GV method 5.4.4 ALD-oxides/In0.53Ga0.47As - Dit(E) by DLTS 5.4.5 Speculation of Dit-related states within InxGa1-xAs band gap by in-situ ALD-oxides passivation 5.5 Conclusion Conclusion Appendix- Achieving a low interfacial density of states with a flat distribution in high- Ga2O3(Gd2O3) directly deposited on Ge A 1 Film growth for MBE- Ga2O3(Gd2O3) on Ge A.2 Device fabrication A.3 Result and discussion A.3.1 Dit(E) by CP technique A.3.2 Dit(E) by GV method A.4 Conclusion A.5 Discussion SCI papers Conference presentations Reference

    1. http://www.aps.org/publications/apsnews/200011/history.cfm.
    2. G. E. Moore, "Cramming More Components onto Integrated Circuits," Electronics Magazine 38, 4 (1965).
    3. C. Auth, M. Buehler, A. Cappellani, C. Choi, G. Ding, W. Han, S. Joshi, B. McIntyre, M. Prince, P. Ranade, J. Sandford, and C. Thomas, "45nm High- + Metal Gate Strain-Enhanced Transistors," Intel Tech. Journal 12, 77 (2008).
    4. J. H. Choi, Y. Mao, and J. P. Chang, "Development of Hafnium Based High- Materials—A Review," Mater. Sci. Eng. R 72, 97 (2011).
    5. K. J. Kuhn, "Considerations for Ultimate CMOS Scaling," IEEE Trans. Electron Dev. 59, 1813 (2012).
    6. C. H. Lee, T. Nishimura, T. Tabata, S. K. Wang, K. Nagashio, K. Kita, and A. Toriumi, "Ge MOSFETs Performance: Impact of Ge Interface Passivation," Tech. Dig. – Int. Electron Devices Meet., 416 (2010).
    7. Y. Nakakita, R. Nakane, T. Sasada, H. Matsubara, M. Takenaka, and S. Takagi, "Interface-Controlled Self-Align Source/Drain Ge pMOSFETs Using Thermally-Oxidized GeO2 Interfacial Layers," Tech. Dig. – Int. Electron Devices Meet., 877 (2008).
    8. S. H. Hsu, H. C. Chang, C. L. Chu, Y. T. Chen, W. H. Tu, F. J. Hou, C. H. Lo, P. J. Sung, B. Y. Chen, G. W. Huang, G. L. Luo, C. W. Liu, C. Hu, and F. L. Yang, "Triangular-channel Ge NFETs on Si with (111) Sidewall-Enhanced Ion and Nearly Defect-free Channels," Tech. Dig. – Int. Electron Devices Meet., 525 (2012).
    9. C. T. Chung, C. W. Chen, J. C. Lin, C. C. Wu, C. H. Chien, and G. L. Luo, "First Experimental Ge CMOS FinFETs Directly on SOI Substrate," Tech. Dig. – Int. Electron Devices Meet., 383 (2012).
    10. M. Caymax, G. Eneman, F. Bellenger, C. Merckling, A. Delabie, G. Wang, R. Loo, E. Simoen, J. Mitard, B. De Jaeger, G. Hellings, K. De Meyer, M. Meuris, and M. Heyns, "Germanium for Advanced CMOS Anno 2009: a SWOT Analysis," Tech. Dig. – Int. Electron Devices Meet., 461 (2009).
    11. R. Zhang, N. Taoka, P. C. Huang, M. Takenaka, and S. Takagi, "1-nm-thick EOT High Mobility Ge n- and p-MOSFETs with Ultrathin GeOx/Ge MOS Interfaces Fabricated by Plasma Post Oxidation," Tech. Dig. – Int. Electron Devices Meet., 642 (2011).
    12. S. Takagi, R. Zhang, S.-H Kim, N. Taoka, M. Yokoyama, J.-K. Suh, R. Suzuki, and M. Takenaka, "MOS Interface and Channel Engineering for High-mobility Ge/III-V CMOS," Tech. Dig. – Int. Electron Devices Meet., 505 (2012).
    13. C. M. Lin, H. C. Chang, Y. T. Chen, I. H. Wong, H. S. Lan, S. J. Luo, J. Y. Lin, Y. J. Tseng, C. W. Liu, C. Hu, and F. L. Yang, "Interfacial Layer-free ZrO2 on Ge with 0.39-nm EOT, κ~43, ~2×10-3A/cm2 Gate Leakage, SS =85mV/dec, Ion/Ioff =6×105, and High Strain Response," Tech. Dig. – Int. Electron Devices Meet., 509 (2012).
    14. C. O. Chui, H. Kim, P. C. McIntyre, and K. C. Saraswat, "Atomic Layer Deposition of High- Dielectric for Germanium MOS Applications-Substrate," IEEE Electron Dev. Lett. 25, 274 (2004).
    15. B. De Jaeger, R. Bonzom, F. Leys, O. Richard, J. Van Steenbergen, G. Winderickx, E. Van Moorhem, G. Raskin, F. Letertre, T. Billon, M. Meuris, and M. Heyns, "Optimisation of a Thin Epitaxial Si Layer as Ge Passivation Layer to Demonstrate Deep Sub-Micron n- and p-FETs on Ge-On-Insulator substrates," Microelectron. Eng. 80, 26 (2005).
    16. M. J. H. van Dal, G. Vellianitis, G. Doornbos, B. Duriez, T.M Shen, C.C. Wu, R. Oxland, K. Bhuwalka, M. Holland, T.L. Lee, C. Wann, C.H. Hsieh, B.H. Lee, K.M. Yin, Z.Q. Wu, M. Passlack, and C.H. Diaz, "Demonstration of Scaled Ge p-channel FinFETs Integrated on Si," Tech. Dig. – Int. Electron Devices Meet., 521 (2012).
    17. V. V. Afanas’ev, S. Shamuilia, A. Stesmans, A. Dimoulas, Y. Panayiotatos, A. Sotiropoulos, M. Houssa, and D. P. Brunco, "Electron Energy Band Alignment at Interfaces of (100) Ge with Rare-Earth Oxide Insulators," Appl. Phys. Lett. 88, 132111 (2006).
    18. G. Mavrou, P. Tsipas, A. Sotiropoulos, S. Galata, Y. Panayiotatos, A. Dimoulas, C. Marchiori, and J. Fompeyrine, "Very High-κ ZrO2 with La2O3 (LaGeOx) Passivating Interfacial Layers on Germanium Substrates," Appl. Phys. Lett. 93, 212904 (2008).
    19. W. C. Lee, P. Chang, T. D. Lin, L. K. Chu, H. C. Chiu, J. Kwo, and M. Hong, "InGaAs and Ge MOSFETs with High κ Dielectrics," Microelectron. Eng. 88, 336 (2011).
    20. L. K. Chu, R. L. Chu, T. D. Lin, W. C. Lee, C. A. Lin, M. L. Huang, Y. J. Lee, J. Kwo, and M. Hong, "Effective Passivation and High-Performance Metal–Oxide–Semiconductor Devices Using Ultra-High-Vacuum Deposited High-κ Dielectrics on Ge without Interfacial Layers," Solid-State Electron. 54, 965 (2010).
    21. C. A. Lin, H. C. Lin, T. H. Chiang, R. L. Chu, L. K. Chu, T. D. Lin, Y. C. Chang, W.-E Wang, J. Kwo and M. Hong, "Achieving a Low Interfacial Density of States with a Flat Distribution in High k Ga2O3(Gd2O3) Directly Deposited on Ge," Appl. Phys. Express 4, 111101 (2011).
    22. C. H. Chang, Y. K. Chiu, Y. C. Chang, K. Y. Lee, T. D. Lin, T.B. Wu, M. Hong, and J. Kwo, "Interfacial Self-cleaning of Atomic Layer Deposition of HfO2 Gate Dielectrics on In0.15Ga0.85As," Appl. Phys. Lett. 89, 242911 (2006).
    23. M. Hong, M. Passlack, J. P. Mannaerts, J. Kwo, S. N. G. Chu, N. Motiya, S. Y. Hou, and V. J. Fratello, "Low Interface State Density Oxide-GaAs Structures Fabricated by In Situ Molecular Beam Epitaxy," J. Vac. Sci. Technol. B 14, 2297 (1996).
    24. K. H. Shiu, T. H. Chiang, P. Chang, L. T. Tung, M. Hong, J. Kwo, and W. Tsai, "1 nm Equivalent Oxide Thickness in Ga2O3(Gd2O3)/In0.2Ga0.8As Metal-Oxide-Semiconductor Capacitors," Appl. Phys. Lett. 92, 172904 (2008).
    25. Y. D. Wu, T. D. Lin, T. H. Chiang, Y. C. Chang, H. C. Chiu, Y. J. Lee, M. Hong, C. A. Lin, and J. Kwo, "Engineering of Threshold Voltages in Molecular Beam Epitaxy-Grown Al2O3/Ga2O3(Gd2O3)/In0.2Ga0.8As," J. Vac. Sci. Technol. B 28, C3H10 (2010).
    26. C. A. Lin, H. C. Chiu, T. H. Chiang, T. D. Lin, Y. H. Chang, W. H. Chang, Y. C. Chang, W.-E. Wang, J. Dekoster, T. Y. Hoffmann, M. Hong, and J. Kwo, "Attainment of Low Interfacial Trap Density Absent of a Large Midgap Peak in In0.2Ga0.8As by Ga2O3(Gd2O3) Passivation," Appl. Phys. Lett. 98, 062108 (2011).
    27. Y. J. Lee, C. H. Lee, L. T. Tung, T. H. Chiang, T. Y. Lai, J. Kwo, C.-H. Hsu, and M. Hong, "Al2O3/Ga2O3(Gd2O3) Passivation on In0.2Ga0.8As/GaAs—Structural Intactness with High-Temperature Annealing," J. Phys. D: Appl. Phys. 43, 135101 (2010).
    28. J. Kwo, D. W. Murphy, M. Hong, R. L. Opila, J. P. Mannaerts, A. M. Sergent, and R. L. Masaitis, "Passivation of GaAs using (Ga2O3)1-x(Gd2O3)x, 0<x<1.0 films," Appl. Phys. Lett. 75, 1116 (1999).
    29. http://www.ioffe.rssi.ru/SVA/NSM/Semicond/index.html.
    30. C. A. Lin, P.-C. Chiu, M. L. Huang, H.-K. Lin, T. H. Chiang, W. C. Lee, Y. C. Chang, Y. H. Chang, J.-I. Chyi, G. J. Brown, J. Kwo and M. Hong, "InAs MOS Devices Passivated with Molecular Beam Epitaxy-Grown Gd2O3 Dielectrics," J. Vac. Sci. Technol. B 30, 02B118 (2012).
    31. T. D. Lin, H. C. Chiu, P. Chang, L. T. Tung, C. P. Chen, M. Hong, J. Kwo, W. Tsai, and Y. C. Wang, "High-Performance Self-Aligned Inversion-Channel In0.53Ga0.47As Metal-Oxide-Semiconductor Field-Effect-Transistor with Al2O3/Ga2O3(Gd2O3) as Gate Dielectrics," Appl. Phys. Lett. 93, 033516 (2008).
    32. L. K. Chu, C. Merckling, A. Alian, J. Dekoster, J. Kwo, M. Hong, M. Caymax, and M. Heyns, "Low Interfacial Trap Density and Sub-nm Equivalent Oxide Thickness in In0.53Ga0.47As (001) Metal-Oxide-Semiconductor Devices Using Molecular Beam Deposited HfO2/Al2O3 as Gate Dielectrics," Appl. Phys. Lett. 99, 042908 (2011).
    33. P. Chang, H.-C. Chiu, T.-D. Lin, M.-L. Huang, W.-H. Chang, S.-Y. Wu, K.-H. Wu, M. Hong, and J. Kwo, "Self-Aligned Inversion-Channel In0.53Ga0.47As Metal–Oxide–Semiconductor Field-Effect Transistors with In-situ Deposited Al2O3/Y2O3 as Gate Dielectrics," Appl. Phys. Express 4, 114202 (2011).
    34. P. D. Ye, G. D. Wilk, B. Yang, J. Kwo, S. N. G. Chu, S. Nakahara, H. J. L. Gossmann, J. P. Mannaerts, M. Hong, K. K. Ng, and J. Bude, "GaAs Metal-Oxide-Semiconductor Field-Effect Transistor with Nanometerthin Dielectric Grown by Atomic Layer Deposition," Appl. Phys. Lett. 92, 143507 (2008).
    35. J. J. Gu, X. W. Wang, H. Wu, J. Shao, A. T. Neal, M. J. Manfra, R. G. Gordon, and P. D. Ye, "20-80nm Channel Lenth InGaAs Gate-all-around Nanowire MOSFETs with EOT=1.2nm and Lowest SS=63mV/dec," Tech. Dig. – Int. Electron Devices Meet., 633 (2012).
    36. F. Xue, A. Jiang, Y. T. Chen, Y. Wang, F. Zhou, Y. F. Chang, and J. Lee, "Excellent Device Performance of 3D In0.53Ga0.47As Gate-Wrap-Around Field-Effect-Transistors with High- Gate Dielectrics," Tech. Dig. – Int. Electron Devices Meet., 629 (2012).
    37. J. Lin, D. A. Antoniadis, and J. A. del Alamo, "Sub-30nm InAs Quantum-Well MOSFETs with Self-aligned Metal Contacts and Sub-1nm EOT HfO2 Insulator," Tech. Dig. – Int. Electron Devices Meet., 757 (2012).
    38. D.-H. Kim, P. Hundal, A. Papavasiliou, P. Chen, C. King, J. Paniagua, M. Urteaga, B. Brar, Y. G. Kim, J.-M. Kuo, J. Li, P. Pinsukanjana, and Y. C. Kao, "E-mode Planar Lg=35nm In0.7Ga0.3As MOSFETs with InP/Al2O3/HfO2 (EOT=0.8nm) Composite Insulator," Tech. Dig. – Int. Electron Devices Meet., 761 (2012).
    39. X. Zhou, Q. Li, C. W. Tang, and K. M. Lau, "30nm Enhancement-mode In0.53Ga0.47As MOSFETs on Si Substrates Grown by MOCVD Exhibiting High Transconductance and Low On-resistance," Tech. Dig. – Int. Electron Devices Meet., 773 (2012).
    40. D. Lin, G. Brammertz, S. Sioncke, C. Fleischmann, A. Delabie, K. Martens, H. Bender, Y. Conard, W. H. Tseng, J. C. Lin, W. E. Wang, K. Temst, A. Vatomme, J. Mitard, M. Caymax, M. Meuris, M. Heyns, and T. Hoffmann, "Enabling the High-Performance InGaAs/Ge CMOS: a Common Gate Stack Solution," Tech. Dig. – Int. Electron Devices Meet., 327 (2009).
    41. E. O'Connor, B. Brennan, V. Djara, K. Cherkaoui, S. Monaghan, S. B. Newcomb, R. Contreras, M. Milojevic, G. Hughes, M. E. Pemble, R. M. Wallace, and P. K. Hurley, "A Systematic Study of (NH4)2S Passivation (22%, 10%, 5%, or 1%) on the Interface Properties of the Al2O3/In0.53Ga0.47As/InP System for n-type and p-type In0.53Ga0.47As Epitaxial Layers," J. Appl. Phys. 109, 024101 (2011).
    42. C. L. Hinkle, M. Milojevic, E. M. Vogel, and R. M. Wallace, "Surface Passivation and Implications on High Mobility Channel Performance," Microelectron. Eng. 86, 1554 (2009).
    43. M. L. Huang, Y. C. Chang, C. H. Chang, Y. J. Lee, P. Chang, J. Kwo, T. B. Wu, and M. Hong, " Surface Passivation of III-V Compound Semiconductors Using Atomic-Layer-Deposition-Grown Al2O3," Appl. Phys. Lett. 87, 252104 (2005).
    44. M. M. Frank, G. D. Wilk, D. Starodub, T. Gustafsson, E. Garfunkel, Y. J. Chabal, J. Grazul, and D. A. Muller, "HfO2 and Al2O3 Gate Dielectrics on GaAs Grown by Atomic Layer Deposition," Appl. Phys. Lett. 86, 152904 (2005).
    45. C. A. Lin, H. C. Chiu, T. H. Chiang, T. D. Lin, Y. H. Chang, W. H. Chang, Y. C. Chang, W.-E. Wang, J. Dekoster, T. Y. Hoffmann, M. Hong, and J. Kwo, "Attainment of Low Interfacial Trap Density Absent of a Large Midgap Peak in In0.2Ga0.8As by Ga2O3(Gd2O3) Passivation," Appl. Phys. Lett. 98, 062108 (2011).
    46. M. Egard, L. Ohlsson, B. M. Borg, F. Lenrick, R. Wallenberg, L.-E. Wernersson, and E. Lind, "High Transconductance Self-Aligned Gate-Last Surface Channel In0.53Ga0.47As MOSFET," Tech. Dig. – Int. Electron Devices Meet., 303 (2011).
    47. Y. Yonai, T. Kanazawa, S. Ikeda, and Y. Miyamoto, "High Drain Current (>2A/mm) InGaAs Channel MOSFET at VD=0.5V with Shrinkage of Channel Length by InP Anisotropic Etching," Tech. Dig. – Int. Electron Devices Meet., 307 (2011).
    48. M. Radosavljevic, G. Dewey, J. M. Fastenau, J. Kavalieros, R. Kotlyar, B. Chu-Kung, W. K. Liu, D. Lubyshev, M. Metz, K. Millard, N. Mukherjee, L. Pan, R. Pillarisetty, W. Rachmady, U. Shah, and R. Chau, "Non-Planar, Multi-Gate InGaAs Quantum Well Field Effect Transistors with High- Gate Dielectric and Ultra-Scaled Gate-to-Drain/Gate-to-Source Separation for Low Power Logic Applications," Tech. Dig. – Int. Electron Devices Meet., 126 (2010).
    49. R. Pillarisetty, B. Chu-Kung, S. Corcoran, G. Dewey, J. Kavalieros, H. Kennel, R. Kotlyar, V. Le, D. Lionberger, M. Metz, N. Mukherjee, J. Nah, W. Rachmady, M. Radosavljevic, U. Shah, S. Taft, H. Then, N. Zelick, and R Chau, "High Mobility Strained Germanium Quantum Well Field Effect Transistor as the p-Channel Device Option for Low Power (Vcc = 0.5 V) III-V CMOS Architecture," Tech. Dig. – Int. Electron Devices Meet., 150 (2010).
    50. M. Radosavljevic, G. Dewey, D. Basu, J. Boardman, B. Chu-Kung, J. M. Fastenau, S. Kabehie, J. Kavalieros, V. Le, W. K. Liu, D. Lubyshev, M. Metz, K. Millard, N. Mukherjee, L. Pan, R. Pillarisetty, W. Rachmady, U. Shah, H. W. Then, and R. Chau, "Electrostatics Improvement in 3-D Tri-gate Over Ultra-Thin Body Planar InGaAs Quantum Well Field Effect Transistors with High-K Gate Dielectric and Scaled Gate-to-Drain/Gate-to-Source Separation," Tech. Dig. – Int. Electron Devices Meet., 765 (2011).
    51. J. J. Gu, Y. Q. Liu, Y. Q. Wu, R. Colby, R. G. Gordon, and P. D. Ye, "First Experimental Demonstration of Gate-all-around III-V MOSFETs by Top-down Approach," Tech. Dig. – Int. Electron Devices Meet., 769 (2011).
    52. J. J. Gu, X. W. Wang, J. Shao, A. T. Neal, M. J. Manfra, R. G. Gordon, and P. D. Ye, "First Experimental Demonstration of Gate-all-around III-V MOSFETs by Top-down Approach," Tech. Dig. – Int. Electron Devices Meet., 529 (2012).
    53. K. H. Shiu, T. H. Chiang, P. Chang, L. T. Tung, M. Hong, J. Kwo, and W. Tsai, "1 nm Equivalent Oxide Thickness in Ga2O3(Gd2O3)/In0.2Ga0.8As Metal-Oxide-Semiconductor Capacitors," Appl. Phys. Lett. 92, 172904 (2008).
    54. C. A. Lin, P.-C. Chiu, M. L. Huang, H.-K. Lin, T. H. Chiang, W. C. Lee, Y. C. Chang, Y. H. Chang, J.-I. Chyi, G. J. Brown, J. Kwo and M. Hong, "InAs MOS Devices Passivated with MBE-Grown Gd2O3 Dielectrics," J. Vac. Sci. Technol. B 30, 02B118 (2012).
    55. P. Chang, H. C. Chiu, T. D. Lin, M. L. Huang, W. H. Chang, S. Y. Wu, K. H. Wu, M. Hong, and J. Kwo, "Self-Aligned Inversion-Channel In0.53Ga0.47As Metal–Oxide–Semiconductor Field-Effect Transistors with In-situ Deposited Al2O3/Y2O3 as Gate Dielectrics," Appl. Phys. Express 4, 114202 (2011).
    56. P. Chang, W. C. Lee, M. L. Huang, Y. J. Lee, M. Hong, and J. Kwo, "Passivation of InGaAs Using In situ Molecular Beam Epitaxy Al2O3/HfO2 and HfAlO/HfO2," J. Vac. Sci. Technol. B 28, C3A9 (2010).
    57. S. Y. Wu, M. Hong, A. R. Kortan, J. Kwo, J. P. Mannaerts, W. C. Lee, and Y. L. Huang, "High-Quality Thin Single-Crystal Gamma-Al2O3 Films Grown on Si (111)," Appl. Phys. Lett. 87, 091908 (2005).
    58. Y. H. Chang, M.L. Huang, P. Chang, J.Y. Shen, B.R. Chen, C.L. Hsu, T.W. Pi, M. Hong, and J. Kwo, "In situ Atomic Layer Deposition and Synchrotron-Radiation Photoemission Study of Al2O3 on Pristine n-GaAs(001) Surface," Microelectron. Eng. 86, 1544 (2009).
    59. Dieter K. Schroder, "Semiconductor Materials and Device Characterization," 3rd ed. Wiley, 353 (2006).
    60. G. V. Groeseneken, H. E. Maes, N. Beltran, and R. F. De Keersmaecker, "A Reliable Approach to Charge Pumping Measurements in MOS Transistors," IEEE Electron Dev. Lett. 31, 42 (1984).
    61. B. Djezzar, S. Oussalah, and A. Smatti, "A New Oxide-Trap Based on Charge-Pumping (OTCP) Extraction Method for Irradiated MOSFET Devices," IEEE Trans. Nucl. Sci.. 51, 1724 (2004).
    62. Dieter K. Schroder, "Semiconductor Materials and Device Characterization," 3rd ed. Wiley, 251 (2006).
    63. E. H. Nicollian and J. R. Brews, "MOS Physics and Technology," Wiley, 176 (1982).
    64. E. H. Nicollian and J. R. Brews, "MOS Physics and Technology," Wiley, 176 (1982).
    65. Brammertz, K. Martens, S. Sioncke, A. Delabie, M. Caymax, M. Meuris, and M. Heyns, "Characteristic Trapping Lifetime and Capacitance-Voltage Measurements of GaAs Metal-Oxide-Semiconductor Structures," Appl. Phys. Lett. 91, 133510 (2007).
    66. M. Passlack, M. Hong, E. F. Schubert, G. J. Zydzik, J. P. Mannaerts, W. S. Hobson, and T. D. Harris, "Advancing Metal–Oxide–Semiconductor Theory: Steady-State Nonequilibrium Conditions," J. Appl. Phys. 81, 7647 (1997).
    67. S. R. Hofstein and G. Warfield, "Physical Limitations on the Frequency Response of a Semiconductor Surface Inversion Layer," Solid-State Electron. 8, 321 (1965).
    68. C. N. Berglund, "Surface States at Steam-Grown Silicon-Silicon Dioxide Interfaces," IEEE Trans. Electron Dev. 13, 701 (1966).
    69. D. V. Lang, "Deep Level Transient Spectroscopy: A New Method to Characterize Traps in Semiconductors," J. Appl. Phys. 45, 3023 (1974).
    70. K. Yamasaki, M. Yoshida, and T. Sugano, "Deep Level Transient Spectroscopy of Bulk Traps and Interface States in Si MOS Diodes," J. Appl. Phys. 18, 113 (1979).
    71. A. Coelho, M. Adam, and H. Boudinov, "Distinguishing Bulk Traps and Interface States in Deep-Level Transient Spectroscopy," J. Phys. D: Appl. Phys. 44, 305303 (2011).
    72. K. Martens, C. O. Chui, G. Brammertz, B. D. Jaeger, D. Kuzum, M. Meuris, M. M. Heyns, T. Krishnamohan, K. Saraswat, H. E. Maes, and G. Groeseneken, "On the Correct Extraction of Interface Trap Density of MOS Devices With High-Mobility Semiconductor Substrates," IEEE Trans. Electron Dev. 55, 547 (2008).
    73. C. N. Berglund, "Surface States at Steam-Grown Silicon-Silicon Dioxide Interfaces," IEEE Trans. Electron Devices 13, 701 (1966).
    74. M. J. Uren, S. Collins, and M. J. Kirton, "Observation of Slow States in Conductance Measurements on Silicon Metal‐Oxide‐Semiconductor Capacitors," Appl. Phys. Lett. 54, 1448 (1989).
    75. D. M. Fleetwood, P. S. Winokur, R. A. Reber, Jr., T. L. Meisenheimer, J. R. Schwank, M. R. Shaneyfelt, and L. C. Riewe, "Effects of OxideTtraps, Interface Traps, and ‘‘Border Traps’’ on Metal‐Oxide‐Semiconductor Devices," J. Appl. Phys. 73, 5058 (1993).
    76. Y. C. Wang, M. Hong, J. M. Kuo, J. P. Mannaerts, J. Kwo, H. S. Tsai, J. J. Krajewski, Y. K. Chen, and A. Y. Cho, "Demonstration of Submicron Depletion-Mode GaAs MOSFET’s with Negligible Drain Current Drift and Hysteresis," IEEE Electron. Dev. Lett. 20, 457 (1999).
    77. P. D. Ye, G. D. Wilk, B. Yang, J. Kwo, H.-J. L. Gossmann, M. Hong, K. K. Ng, and J. Bude, "Depletion-Mode InGaAs Metal-Oxide-Semiconductor Field-Effect Transistor with Oxide Gate Dielectric Grown by Atomic-Layer Deposition," Appl. Phys. Lett. 84, 434 (2004).
    78. P. J. Tsai, L. K. Chu, Y. W. Chen, Y. N. Chiu, H. P. Yang, P. Chang, J. Kwo, J. Chi, and M. Hong, "Depletion-Mode GaAs-Based MOSFET with Ga2O3(Gd2O3) as a Gate Dielectric," J. Crystal Growth 301-302, 1013 (2007).
    79. H.-S. Kim, I. Ok, M. Zhang, T. Lee, F. Zhu, L. Yu, and J. C. Lee, "Depletion-Mode GaAs Metal-Oxide-Semiconductor Field-Effect Transistor with HfO2 Dielectric and Germanium Interfacial Passivation Layer," Appl. Phys. Lett. 89, 222904 (2006).
    80. F. Zhu, S. Koveshnikov, I. Ok, H. S. Kim, M. Zhang, T. Lee, G. Thareja, L. Yu, and J. C. Lee, "Depletion-Mode GaAs Metal-Oxide-Semiconductor Field-Effect Transistor with Amorphous Silicon Interface Passivation Layer and Thin HfO2 Gate Oxide," Appl. Phys. Lett. 91, 043507 (2007).
    81. C.A. Lin, T.D. Lin, T.H. Chiang, H.C. Chiu, P. Chang, M. Hong, and J. Kwo, "Depletion-Mode In0.2Ga0.8As/GaAs MOSFET with Molecular Beam Epitaxy Grown Al2O3/Ga2O3(Gd2O3) as Gate Dielectrics," J. Crystal Growth 311, 1954 (2009).
    82. C. G. Sodini, T. W. Ekstedt, and J. L. Moll, "Charge Accumulation and Mobility in the Thin Dielectric MOS Transistors," Solid-State Electron. 5, 883 (1982).
    83. Dieter K. Schroder, "Semiconductor Materials and Device Characterization," 3rd ed. Wiley, 138 (2006).
    84. Y. Xuan, H. C. Lin, and P. D. Ye, "Simplified Surface Preparation for GaAs Passivation Using Atomic-Layer-Deposited High-κ Dielectrics," IEEE Trans. Electron Devices 54, 1811 (2007).
    85. F. Ren, M. Hong, W.S. Hobson, J. M. Kuo, J. R. Lothian, J. P. Mannaerts, J. Kow, S. N. G. Chu, Y. K. Chen and A. Y. Cho, "Demonstration of enhancement-mode p- and n-channel GaAs MOSFETs with Ga2O3(Gd2O3) as Gate Oxide," Solid-State Electron. 41, 1751 (1997).
    86. Y. C. Wang, M. Hong, J. M. Kuo, J. P. Mannaerts, J. Kwo, H. S. Tsai, J. J. Krajewski, J. S. Weiner, Y. K. Chen, and A. Y. Cho, "Advances in GaAs MOSFETs using Ga2O3(Gd2O3) as Gate Oxide," Proc. Mat. Res. Soc. Symp. (MRS) 573, 219 (1999).
    87. Y. Xuan, H. C. Lin, P. D. Ye, and G. D. Wilk, "Capacitance-Voltage Studies on Enhancement-Mode InGaAs mMetal-Oxide-Semiconductor Field-Effect Transistor Using Atomic-Layer-Deposited Al2O3 Gate Dielectric," Appl. Phys. Lett. 88, 263518 (2006).
    88. H.-S. Kim, I. Ok, M. Zhang, F. Zhu, S. Park, J. Yum, H. Zhao, J. C. Lee, J. Oh, and P. Majhi, "Inversion-Type Enhancement-Mode HfO2-Based GaAs Metal-Oxide-Semiconductor Field Effect Transistors with a Thin Ge layer," Appl. Phys. Lett. 92, 032907 (2008).
    89. H.-C. Chin, M. Zhu, G. S. Samudra, and Y.-C. Yeo, "n-Channel GaAs MOSFET with TaN/HfAlO Gate Stack Formed Using In Situ Vacuum Anneal and Silane Passivation," J. Electrochem. Soc. 155, H464 (2008).
    90. J. P. de Souza, E. Kiewra, Y. Sun, A. Callegari, D. K. Sadana, G. Shahidi, D. J. Webb, J. Fompeyrine, R. Germann, C. Rossel, and C. Marchiori, "Inversion Mode n-channel GaAs Field Effect Transistor with High-/Metal Gate," Appl. Phys. Lett. 92, 153508 (2008).
    91. C. P. Chen, T. D. Lin, Y. J. Lee, Y. C. Chang, M. Hong, J. Kwo, "Self-Aligned Inversion n-channel In0.2Ga0.8As/GaAs Metal–Oxide–Semiconductor Field-Effect-Transistors with TiN Gate and Ga2O3(Gd2O3) Dielectric," Solid-State Electron. 52, 1615 (2008).
    92. M. Wu, Y. Q. Wu, O. Koybasi, T. Shen, and P. D. Ye, "Metal-Oxide-Semiconductor Field-Effect Transistors on GaAs (111)A Surface with Atomic-Layer-Deposited Al2O3 as Gate Dielectrics," Appl. Phys. Lett. 94, 212104 (2009).
    93. L. Dong, X. W. Wang, J. Y. Zhang, X. F. Li, R. G. Gordon, and P. D. Ye, "GaAs Enhancement-Mode NMOSFETs Enabled by Atomic Layer Epitaxial La1.8Y0.2O3 as Dielectric," IEEE Electron. Dev. Lett. 34, 487 (2013).
    94. S. Roddaro, K. Nilsson, G. Astromskas, L. Samuelson, L.-E. Wernersson, O. Karlstrom, and A. Wacker, "InAs Nanowire Metal-Oxide-Semiconductor Capacitors," Appl. Phys. Lett. 92, 253509 (2008).
    95. N. Li, E. S. Harmon, J. Hyland, D. B. Salzman, T. P. Ma, Y. Huan, and P. D. Ye, "Properties of InAs Metal-Oxide-Semiconductor Structures with Atomic-Layer-Deposited Al2O3 Dielectric," Appl. Phys. Lett. 92, 143507 (2008).
    96. C. A. Lin, H. C. Chiu, T. H. Chiang, T. D. Lin, Y. H. Chang, W. H. Chang, Y. C. Chang, W.-E. Wang, J. Dekoster, T. Y. Hoffmann, M. Hong, and J. Kwo, "Attainment of Low Interfacial Trap Density Absent of a Large Midgap Peak in In0.2Ga0.8As by Ga2O3(Gd2O3) Passivation," Appl. Phys. Lett. 98, 062108 (2011).
    97. T. D. Lin, H. C. Chiu, P. Chang, L. T. Tung, C. P. Chen, M. Hong, J. Kwo, W. Tsai, and Y. C. Wang, "High-Performance Self-Aligned Inversion-Channel In0.53Ga0.47As Metal-Oxide-Semiconductor Field-Effect-Transistor with Al2O3/Ga2O3(Gd2O3) as Gate Dielectrics," Appl. Phys. Lett. 93, 033516 (2008).
    98. J. Kwo, D. W. Murphy, M. Hong, R. L. Opila, J. P. Mannaerts, A. M. Sergent, and R. L. Masaitis, "Passivation of GaAs using (Ga2O3)1-x(Gd2O3)x, 0<x<1.0 films," Appl. Phys. Lett. 75, 1116 (1999).
    99. H.-K. Lin, D.-W. Fan, Y.-C. Lin, P.-C. Chiu, C.-Y. Chien, P.-W. Li, J.-I. Chyi, C.-H. Ko, T.-M. Kuan, M.-K. Hsieh, W.-C. Lee, and C. H. Wann, "E-Beam-Evaporated Al2O3 for InAs/AlSb Metal–Oxide–Semiconductor HEMT Development," Solid-State Electron. 54, 505 (2010).
    100. E. A. Kraut, R. W. Grant, J. R. Waldrop, and S. P. Kowalczyk, "Precise Determination of the Valence-Band Edge in X-Ray Photoemission Spectra: Application to Measurement of Semiconductor Interface Potentials," Phys. Rev. Lett. 44, 1620 (1980).
    101. M. L. Huang, Y. C. Chang, Y. H. Chang, T. D. Lin, J. Kwo, and M. Hong, "Energy-Band Parameters of Atomic Layer Deposited Al2O3 and HfO2 on InxGa1−xAs," Appl. Phys. Lett. 94, 052106 (2009).
    102. T. S. Lay, M. Hong, J. Kwo, J. P. Mannaerts, W. H. Hung, and D. C. Huang, "Energy-Band Parameters at the GaAs– and GaN–Ga2O3(Gd2O3) interfaces," Solid-State Electron. 45, 1679 (2001).
    103. N. Li, E. S. Harmon, J. Hyland, D. B. Salzman, T. P. Ma, Y. Huan, and P. D. Ye, "Properties of InAs Metal-Oxide-Semiconductor Structures with Atomic-Layer-Deposited Al2O3 Dielectric," Appl. Phys. Lett. 92, 143507 (2008).
    104. H.-K. Lin, D.-W. Fan, Y.-C. Lin, P.-C. Chiu, C.-Y. Chien, P.-W. Li, J.-I. Chyi, C.-H. Ko, T.-M. Kuan, M.-K. Hsieh, W.-C. Lee, and C. H. Wann, "E-Beam-Evaporated Al2O3 for InAs/AlSb Metal–Oxide–Semiconductor HEMT Development," Solid-State Electron. 54, 505 (2010).
    105. K. Martens, C. O. Chui, G. Brammertz, B. D. Jaeger, D. Kuzum, M. Meuris, M. M. Heyns, T. Krishnamohan, K. Saraswat, H. E. Maes, and G. Groeseneken, "On the Correct Extraction of Interface Trap Density of MOS Devices with High-Mobility Semiconductor Substrates," IEEE Trans. Electron Dev. 55, 547 (2008).
    106. D. Wheeler, L.-E. Wernersson, L. Froberg. C. Thelander, A. Mikkelsen, K.-J. Weststrate, A. Sonnet, E. M. Vogel, and A. Seabaugh, "Deposition of HfO2 on InAs by Atomic-Layer Deposition," Microelectron. Eng. 86, 1561 (2009).
    107. M. L. Huang, Y. C. Chang, C. H. Chang, Y. J. Lee, P. Chang, J. Kwo, T. B. Wu, and M. Hong, "Surface Passivation of III-V Compound Semiconductors Using Atomic-Layer-Deposition-Grown Al2O3," Appl. Phys. Lett. 87, 252104 (2005).
    108. M. M. Frank, G. D. Wilk, D. Starodub, T. Gustafsson, E. Garfunkel, Y. J. Chabal, J. Grazul, and D. A. Muller, "HfO2 and Al2O3 Gate Dielectrics on GaAs Grown by Atomic Layer Deposition," Appl. Phys. Lett. 86, 152904 (2005).
    109. D. Lin, G. Brammertz, S. Sioncke, C. Fleischmann, A. Delabie, K. Martens, H. Bender, Y. Conard, W. H. Tseng, J. C. Lin, W. E. Wang, K. Temst, A. Vatomme, J. Mitard, M. Caymax, M. Meuris, M. Heyns, and T. Hoffmann, "Enabling the High-Performance InGaAs/Ge CMOS: a Common Gate Stack Solution," Tech. Dig. – Int. Electron Devices Meet., 327 (2009).
    110. E. O'Connor, B. Brennan, V. Djara, K. Cherkaoui, S. Monaghan, S. B. Newcomb, R. Contreras, M. Milojevic, G. Hughes, M. E. Pemble, R. M. Wallace, and P. K. Hurley, "A Systematic Study of (NH4)2S Passivation (22%, 10%, 5%, or 1%) on the Interface Properties of the Al2O3/In0.53Ga0.47As/InP System for n-type and p-type In0.53Ga0.47As Epitaxial Layers," J. Appl. Phys. 109, 024101 (2011).
    111. C. L. Hinkle, M. Milojevic, E. M. Vogel, and R. M. Wallace, "Surface Passivation and Implications on High Mobility Channel Performance," Microelectron. Eng. 86, 1554 (2009).
    112. W. Wang, C. L. Hinkle, E. M. Vogel, K. Cho, and R. M. Wallace, "Is Interfacial Chemistry Correlated to Gap States for High-/III-V Interfaces," Microelectron. Eng. 88, 1061 (2011).
    113. C. H. Hsu, P. Chang, W. C. Lee, Z. K. Yang, Y. J. Lee, M. Hong, J. Kwo, C. M. Huang, and H. Y. Lee, "Structure of HfO2 Films Epitaxially Grown on GaAs (001)," Appl. Phys. Lett. 89, 122907 (2006).
    114. C. L. Hinkle, A. M. Sonnet, M. Milojevic, F. S. Aguirre-Tostado, H. C. Kim, J. Kim, R. M. Wallace, and E. M. Vogel, "Comparison of n-type and p-type GaAs Oxide Growth and Its Effects on Frequency Dispersion Characteristics," Appl. Phys. Lett. 93, 113506 (2008).
    115. Y. H. Chang, M. L. Huang, P. Chang, C. A. Lin, Y. J. Chu, B. R. Chen, C. L. Hsu, J. Kwo, T. W. Pi, and M. Hong, "Electrical Properties and Interfacial Chemical Environments of in situ Atomic Layer Deposited Al2O3 on Freshly Molecular Beam Epitaxy Grown GaAs," Microelectron. Eng. 88, 440 (2011).
    116. C. W. Cheng, J. Hennessy, D. Antoniadis, and E. A. Fitzgerald, "Self-Cleaning and Surface Recovery with Arsine Pretreatment in ex situ Atomic-Layer-Deposition of Al2O3 on GaAs," Appl. Phys. Lett. 95, 082106 (2009).
    117. D. Shahrjerdi, T. Akyol, M. Ramon, D. I. Garcia-Gutierrez, E. Tutuc, and S. K. Banerjee, "Self-Aligned Inversion-Type Enhancement-Mode GaAs Metal-Oxide-Semiconductor Field-Effect Transistor with Al2O3 Gate Dielectrics," Appl. Phys. Lett. 92, 203505 (2008).
    118. P. L. Castro and B. E. Deal, "Low-Temperature Reduction of Fast Surface States Associated with Thermally Oxidized Silicon," J. Electrochem. Soc. 118, 280 (1971).
    119. B. Shin, J. R. Weber, R. D. Long, P. K. Hurley, C. G. Van de Walle, and P. C. McIntyre, "Origin and Passivation of Fixed Charge in Atomic Layer Deposited Aluminum Oxide Gate Insulators on Chemically Treated InGaAs Substrates," Appl. Phys. Lett. 96, 152908 (2010).
    120. Y. Hwang, R. Engel-Herbert, N. G. Rudawski, and S. Stemmer, "Effect of Postdeposition Anneals on the Fermi LevelResponse of HfO2/In0.53Ga0.47As Gate Stacks," J. Appl. Phys. 108, 034111 (2010).
    121. H. C. Lin, W.-E. Wang, G. Brammertz, M. Meuris, M. Heyns, "Electrical Study of Sulfur Passivated In0.53Ga0.47As MOS Capacitor and Transistor with ALD Al2O3 as Gate Insulator," Microelectron. Eng. 86, 1554 (2009).
    122. W. Wang, C.L. Hinkle, E.M. Vogel, K. Cho, R.M. Wallace, "Is Interfacial Chemistry Correlated to Gap States for High-/III–V Interfaces," Microelectron. Eng. 88, 1061 (2011).
    123. D. V. Lang, "Deep Level Transient Spectroscopy: A New Method to Characterize Traps in Semiconductors," J. Appl. Phys. 45, 3023 (1974).
    124. B. Djezzar, S. Oussalah, and A. Smatti, "A New Oxide-Trap Based on Charge-Pumping (OTCP) Extraction Method for Irradiated MOSFET Devices," IEEE Trans. Nuclear Science 51, 1724 (2004).
    125. D. Bauza and Y. Maneglia, "In-Depth Exploration of Si–SiO2 Interface Traps in MOS Transistors Using the Charge Pumping Technique," IEEE Electron. Dev. Lett. 44, 2262 (1997).
    126. K. Yamasaki, M. Yoshida, and T. Sugano, "Deep Level Transient Spectroscopy of Bulk Traps and Interface States in Si MOS Diodes," J. Appl. Phys. 18, 113 (1979).
    127. R. Xie, M. Yu, M. Y. Lai, L. Chan, and C. Zhu, "High- Gate Stack on Germanium Substrate with Fluorine Incorporation," Appl. Phys. Lett. 92, 163505 (2008).
    128. R. Xie, W. He, M. Yu, and C. Zhu, "Effects of Fluorine Incorporation and Forming Gas Annealing on High- Gated Germanium Metal-Oxide-Semiconductor with GeO2 Surface Passivation," Appl. Phys. Lett. 93, 073504 (2008).
    129. C. A. Lin, L. K. Chu, T. D. Lin, R. L. Chu, M. L. Huang, L. T. Tung, M. Hong and J. Kwo, "Charge pumping study of the trap density in CF4 treated TiN/Ga2O3(Gd2O3)/Ge," Proc. 40th IEEE Semiconductor Interface Specialists Conference (SISC), 119 (2009).
    130. B. Djezzar, S. Oussalah, and A. Smatti, "A New Oxide-Trap Based on Charge-Pumping (OTCP) Extraction Method for Irradiated MOSFET Devices," IEEE Trans. Nucl. Sci. 51, 1724 (2004).
    131. T.-W. Pi, M. L. Huang, W. C. Lee, L. K. Chu, T. D. Lin, T. H. Chiang, Y. C. Wang, Y. D. Wu, M. Hong, and J. Kwo, "High-Resolution Core-Level Photoemission Study of CF4-Treated Gd2O3(Ga2O3) Gate Dielectric on Ge Probed by Synchrotron Radiation," Appl. Phys. Lett. 98, 062903 (2011).
    132. P. V. Gray and D. M. Brown, "Density of SiO2/Si Interface States," Appl. Phys. Lett. 8, 31 (1966).
    133. J. Mitard, K. Martens, B. De Jaeger, J. Franco, C. Shea, C. Plourde, F. E. Leys, R. Loo, G. Hellings, G. Eneman, W.-E. Wang, J. C. Lin, B. Kaczer, K. De Meyer, T. Hoffmann, S. De Gendt, M. Caymax, M. Meuris, and M. M. Heyns, "Impact of Epi-Si Growth Temperature on Ge-pFET Performance," Proc. 39th European Solid-State Device Research Conf. (ESSDERC), 411 (2009).
    134. A. Toriumi, C. H. Lee, S. K. Wang, T. Tabata, M. Yoshida, D. D. Zhao, T. Nishimura, K. Kita, and K. Nagashio, "Material Potential and Scalability Challenges of Germanium CMOS," Tech. Dig. – Int. Electron Devices Meet., 646 (2011).
    135. K. Martens, C. O. Chui, G. Brammertz, B. D. Jaeger, D. Kuzum, M. Meuris, M. M. Heyns, T. Krishnamohan, K. Saraswat, H. E. Maes, and G. Groeseneken, "On the Correct Extraction of Interface Trap Density of MOS Devices With High-Mobility Semiconductor Substrates," IEEE Trans. Electron Dev. 55, 547 (2008).
    136. C. A. Lin, H. C. Chiu, T. H. Chiang, T. D. Lin, Y. H. Chang, W. H. Chang, Y. C. Chang, W.-E. Wang, J. Dekoster, T. Y. Hoffmann, M. Hong, and J. Kwo, "Attainment of Low Interfacial Trap Density Absent of a Large Midgap Peak in In0.2Ga0.8As by Ga2O3(Gd2O3) Passivation," Appl. Phys. Lett. 98, 062108 (2011).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE