研究生: |
邱雅琴 Ya Chin Chiou |
---|---|
論文名稱: |
矽奈米帶製備及利用穿透式電子顯微鏡臨場 (In situ) 觀察鎳矽化物奈米帶成長之研究 Preparation of Silicon Nanoribbons and Investigation on the Formation of the Nickel Silicide Nanoribbons by In situ Transmission Electron Microscopy |
指導教授: |
陳力俊
Lih Juann Chen |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 英文 |
論文頁數: | 78 |
中文關鍵詞: | 矽奈米帶 、鎳矽化物奈米帶 、穿透式電子顯微鏡臨場加熱 、富鎳之鎳矽化物 、活化能 、模擬影像 |
外文關鍵詞: | silicon nanoribbon, nickel silicide nanoribbon, In situ TEM, Ni-rich nickel silicide, activation energy, simulated image |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,一維矽及矽化物奈米結構擁有特殊的性質且有蠻大的潛力應用在半導體或光電產業上,因此受到很多研究團隊的注意。而我們的研究主要著重在一維矽奈米結構的製備,及利用穿透式電子顯微鏡進行臨場 (In situ) 加熱並觀察研究奈米尺度下矽奈米帶(nanoribbon) 轉換成鎳矽化物奈米帶的過程及其相關的成長機制。
藉由簡單的裝置及利用HF/AgNO3 溶液,在適當實驗條件下可成功地快速製備出大量且規則的單晶矽奈米帶,成長方向與所用之矽基板方向相同,而矽奈米帶的長度則可由反應時間來控制。
接著,使用鎳網 (300 mesh Ni grid) 來提供鎳原子,將矽奈米帶置於其上,並利用In situ TEM 來加熱此「矽奈米帶/鎳網」的系統,可觀察到鎳原子擴散進矽奈米帶並轉變成鎳矽化物奈米帶的過程,且證明在奈米尺度下,鎳/矽系統中主要的擴散原子為鎳原子。在此系統裡,鎳網可提供之鎳原子遠多於散佈在鎳網上矽奈米帶所含之矽原子,因此所形成的鎳矽化物奈米帶都屬於含鎳較多的相。此外,我們成功地對同一根矽奈米帶進行變溫的觀察,錄下其不同溫度下轉換的過程後,經分析及計算知道其屬於擴散控制的成長機制,再由阿瑞尼士 (Arrhenius) 方程式可求得形成鎳矽化物所需的活化能。使用此系統 (矽奈米帶/鎳網) 進行加熱並臨場觀察的實驗,對於釐清奈米尺度下矽化的機制及過程是很有益處的。
另外,我們將矽及鎳矽化物奈米帶的高分辨原子影像 (HRTEM image) 與模擬軟體所模擬出的原子影像相比對,可決定出奈米帶的厚度,亦即可知道奈米帶在矽化反應前後的厚度差別。
Arrays of aligned silicon nanoribbons were prepared on silicon substrates in the solution containing aqueous HF and AgNO3 by metal-nanoparticel-assisted etching technique.
The in situ investigations of a solid-state reaction where the silicon nanoribbons transformed into nickel silicide nanoribbons are achieved in the silicon nanoribbons/Ni grid system. The results indicate that Ni atoms are still the dominant diffusing species in Ni/Si system at nanometer scale. The condition for the in situ experiments is under Ni-rich situation so that the final phases of the formed silicides are all Ni-rich phases. We also investigate the transformation of Si nanoribbons into nickel silicide nanoribbons at elevated temperature. The activation energy (1.06 eV) for the growth of nickel silicide nanoribbons was obtained from an Arrhenius plot. The approach is useful to clarify the silicidation mechanisms and phase transformation at the nanoscale.
In addition, using the method of comparison of the experimental high-resolution TEM images with the simulated images, the thickness of nanoribbons could be determined.
1. S. Iijima, “Helical Microtube of Graphitic Carbon,”
Nature 1991, 354, 56-58.
2.M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and
C. M. Lieber, “Growth of Nanowire Superlatteice
Structures for Nanoscale Photonics and Electronics,”
Nature 2002, 415, 617-620.
3.X. Duan, Y. H., Y. Chi, J. Wang, and C. M. Lieber, “Indium Phosphide Nanowires as Building Blocks for
Nanoscale Electronic and Optoelectronic Devices,” Nature
2001, 409, 66-69.
4.Y. Cui, X. Duan, J. Wang, and C. M. Lieber, “Doping and
Electrical Transport in Silicon Nanowires,” J. Phys.
Chem. B 2000, 104, 5213-5216.
5.M. S. Gudiksen, J. Wang, and C. M. Lieber, “Synthetic
Control of the Diameter and Length of Single Crystal
Semiconductor Nanowires,” J. Phys. Chem. B 2001, 105,
4062-4064.
6.X. Duan, and C. M. Lieber, “General Synthesis of
Compound Semiconductor Nanowires,” Adv. Mater. 2001, 12,
298-302.
7.D. P. Yu, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, J.
S. Fu, H. Z. Zhang, Y. Ding, G. C. Xiong, L. P. You, J.
Xu, and S. Q. Feng, “Direct Evidence of Quantum
Confinement from the Size Dependence of the
Photoluminescence of Silicon Quantum Wires,” Phys. Rev.
B 1999, 59, R2498-R2501.
8.J. D. Holmes, K. P. Johnston, R. C. Doty, and B. A.
Korgel, “Control of Thickness and Orientation of
Solution-Grown Silicon Nanowires,” Science 2000, 287,
1471-1473.
9.Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, “High Performance Silicon Nanowire Field Effect
Transistors,” Nano Lett. 2003, 3, 149-152.
10.G. F. Zheng, W. Lu, S. Jin, and C. M. Lieber,
“Synthesis and Fabrication of High-Performance N-type
Silicon Nanowire Transistors,” Adv. Mater. 2004, 16,
1890-1893.
11.Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and
C. M. Lieber, “Logic Gates and Computation from
Assebled Nanowire Building Blocks,” Science 2001, 294,
1313-1317.
12.Y. Cui, Q. Weir, H. park, and C. M. Lieber, “Nanowire
Nanosensors for Highly Sensitive and Selective Detection
of Biological and Chemical Species,” Science 2001, 293,
1289-1292.
13.A. M. Morales and C. M. Lieber, “A Laser Ablation
Method for the Synthesis of Crystalline Semiconductor
Nanowires,” Science 1998, 279, 208-211.
14.Frederick C. K. Au, K. W. Wong, Y. H. Tang, Y. F. Zhang,
I. Bello, and S. T. Lee, “Electron field emission from
silicon nanowires,” Appl. Phys. Lett. 1999, 75, (12),
1700-1702.
15.N, Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, I. Bello,
and S. T. Lee, “Si nanowires grown from silicon
oxide,” Chem. Phys. Lett. 1999, 299, (2), 237-242.
16.Z. W. Pan, Z. R. Dai, L. Xu, S. T. Lee, and Z. L. Wang,
“Temperature-Controlled Growh of Silicon-Based
Nanostructures by Thermal Evaporation of SiO Powders,”
J. Phys. Chem. B 2001, 105, 2507-2514.
17.N. Wang, Y. H. Zhang, C. S. Lee, and S. T. Lee,
“Nucleation and Growth of Si Nanowires from Silicon
Oxide,” Phys. Rev. B 1998, 58, R16024-R16026.
18.N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, I. Bello,
and S. T. Lee, “SiO2-enhanced synthesis of Si nanowires
by laser ablation,” Appl. Phys. Lett. 1998, 73.
19.Y. H. Tang, Y. F. Zhang, H. Y. Peng, N. Wang, C. S. Lee,
and S. T. Lee, “Si nanowires synthesized by laser
ablation of mixed SiC and SiO2 powders,” Chem. Phys.
Lett. 1999, 314, 16-20.
20.D. P. Yu, Y. J. Xing, Q. L. Hang, H. F. Yan, J. Xu, Z.
H. Xi, and S. Q. Feng, “Controlled Growth of Oriented
Amorphous Silicon Nanowires via A Solid-Liquid-Solid
(SLS) Mechanism,” Physica E 2001, 9, 305-309.
21.K. Q. Peng, Y. J. Yan, S. P. Gao, and J. Zhu, “Synhesis
of Large-Area Silicon Nanowire Arrays via Self-
Assembling Nanoelectrochemistry,” Adv. Mater. 2002, 14,
1164-1167.
22.K. Q. Peng, Y. J. Yan, S. P. Gao, and J. Zhu, “Dendrite-
Assisted Growth of Silicon Nanowires in Electroless
Metal Depositon,” Adv. Funct. Mater. 2003, 13, 127-132.
23.K. Q. Peng, Z. P. Huang, and J. Zhu, “Fabrication of
Large-Area Silicon Nanowire p-n Junction Diode Arrays,”
Adv. Mater. 2004, 16, (1), 73-76.
24.k. Q. Peng, Y. Wu, H. Fang, X. Y. Zhong, Y. Xu, and J.
Zhu, “Uniform, Axial-Orientation Alignment of One-
Dimensional Single-Crystal Silicon Nanostructure
Arrays,” Angew. Chem. Int. Ed. 2005, 44, 2737-2742.
25.K. Q. Peng, J. J. Hu, Y. J. Yan, Y. Wu, H. Fang, Y. Xiu,
S. T. Lee, and J. Zhu, “Fabrication of Single-
Crystalline Silicon Nanowires by Scratching a Silicon
Surface with Catalytic Metal Particles,” Adv. Funct.
Mater. 2006, 16, 387-394.
26.C. Li, G. J. Fang, S. Sheng, Z. Q. Chen, J. b. Wang, S.
A. Ma, and X. Z. Zhao, “Raman Spectroscopy and Field
Electron Emission Properties of Aligned Silicon Nanowire
Arrays,” Physica E 2005, 30, 169-173.
27.K. Q. Peng, Y. Xu, Y. Wu, Y. J. Yan, S. T. Lee, and J.
Zhu, “Aligned Single-Crystalline Si Nanowire Arrays for
Photovoltaic Applications,” small 2005, 1, (11), 1062-
1067.
28.R. Q. Zhang, Y. Lifshitz, and S. T. Lee, “Oxide-
Assisted Growth of Semiconducting Nanowires,” Adv.
Mater. 2003, 15, 635-640.
29.W. S. Shi, H. Y. Peng, N. Wang, C. S. Lee, R. Kalish,
and S. T. Lee, “Free-standing Single Crystal Silicon
Nanoribbons,” J. Am. Chem. Soc. 2001, 123, 11095-11096.
30.R. S. Wagner and W. C. Ellis, “Vapor-Liquid-Solid
Mechanism of Single Crystal Growth,” Appl. Phys. Lett.
1964, 4, 89-90.
31.J. Westwater, D. P. Gosain, S. Tomiya, and S. Usui,
“Growth of Silicon Nanowires via Gold/Silane Vapor-
Liquid-Solid Reaction,” J. Vac. Sci. Technol. B 1997,
15, 554-557.
32.Y. Y. Wu and P. D. Yang, “Germanium Nanowire Growth via
Simple Vapor Transport,” Chem. Mater. 2000, 12, (605-
607).
33.C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu,
J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng, and Y. F.
Chen, “Catalytic Growth and Characterization fo Gallium
Nitride Nanowires,” J. Am. Chem. Soc. 2001, 123, 2791-
2798.
34.Z. H. Wu, X. Y. Mei, D. Kim, M. Blumin, and H. E. Ruda,
“Growth of Au-Catalyzed Ordered GaAs Nanowire Arrays by
Molecular-Beam Epitaxy,” Appl. Phys. Lett. 2002, 81,
5177-5179.
35.Y. W. Wang, L. D. Zhang, C. H. Liang, G. Z. Wang, and X.
S. Peng, “Catalytic Growth and Photoluminescence
Properties of Semiconductor Single-Crystal ZnS
Nanowires,” Chem. Phys. Lett. 2002, 357, 314-318.
36.X. C. Wu and Y. R. Tao, “Growth of CdS Nanowires by
Physical Vapor Depostion,” J. Cryst. Growth 2002, 242,
309-312.
37.M. H. Huang, Y. Y. Wu, H. Feick, N. Tran, E. Weber, and
P. D. Yang, “Catalytic Growth of Zinc Oxide Nanowires
by Vapor Transport,” Adv. Mater. 2001, 13, 113-116.
38.D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z. G. Bai,
J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, and S. Q.
Feng, “Amorphous Silica Nanowires: Intensive Blue Light
Emitters,” Appl. Phys. Lett. 1998, 73, 3076-3078.
39.Y. F. Zhang, Y. H. Tang, N. Wang, C. S. Lee, I. Bello,
and S. T. Lee, “Germanium Nanowires Sheathed with An
Oxide Layer,” Phys. Rev. B 2000, 61, 4518-4521.
40.S. T. Lee, Y. F. Zhang, N. Wang, Y. H. Tang, I. Bello,
C. S. Lee, and Y. W. Chung, “Semiconductor Nanowires
from oxides,” J. Mater. Res. 1999, 14, 4503.
41.W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, and S. T.
Lee, “Microstructures of Gallium Nitride Nanowires
Synthesized by Oxide-Assisted Method,” Chem. Phys.
Lett. 2001, 345, 377-380.
42.W. S. Shi, H. Y. Peng, N. Wang, C. S. Lee, R. Kalish,
and S. T. Lee, “Oxide-Assisted Growth and Optical
Characterization of Gallium-Arsenide Nanowires,” Appl.
Phys. Lett. 2001, 78, 3304-3306.
43.J. Q. Hu, X. L. Ma, Z. Y. Xie, N. Wong, C. S. Lee, and
S. T. Lee, “Characterization of Zinc Oxide Crystal
Whiskers Grown by Thermal Evaporation,” Chem. Phys.
Lett. 2001, 344, 97-100.
44.K. Maex, “Silicides for integrated circuits: TiSi2 and
CoSi2,” Mater. Sci. Eng. 1993, R11, 53.
45.M. K. Datta, S. K. Pabi, and B. S. Murty, “Phase fields
of nickel silicides obtained by mechanical alloying in
the nanocrstalline state,” J. Appl. Phys. 2000, 87,
8393-8400.
46.J. Crofton, P. G. Mcmullin, J. R. Williams, M. J.
Bozack, “High-temperature ohmic contact to n-type 6H-
SiC using nickel,” J. Appl. Phys. 1995, 77, 1317-1319.
47.M. K. Datta, S. K. Pabi, and B. S. Murty, “Thermal
stability of nanocrystalline Ni silicides synthesized by
mechanical alloying,” Mater. Sci. Eng. 2000, A284, 219- 225.
48.G. Majni, M. Costato, and F. Panini, “The Growth
Processes of Thin Film Silicides in Si/Ni Planar
Systems,” Thin Solid Films 1985, 125, 71-78.
49.K. N. Tu, W. K. Chu, and J. W. Mayer, “Structure and
Growth Kinetics of Ni2Si of Silicon,” Thin Solid Films
1975, 25, 403-413.
50.J. O. Olowolafe, M.-A. Nicolet, and J. W. Mayer,
“Influence of the Nature of the Si Substrate on Nickel
Silicide Formed From Thin Ni Films,” Thin Solid Films
1976, 38, 143-150.
51.C. -D. Lien, M.-A. Nicolet, and S. S. Lau, “Kinetics of
Silicides on Si<100> and Evaporated Silicon
Substrates,” Thin Solid Films 1986, 143, 63-72.
52.F. d'Heurle, C. S. Petersson, J. E. E. Baglin, S. J. La
Placa, and C. Y. Wong, “Formation of thin films of
NiSi: Metatable structure, diffusion mechanisms in
intermetallic compounds,” J. Appl. Phys. 1984, 55,
(12), 4208-4218.
53.M. Levit, I. Grimberg, and B-Z. Weiss, “Morphology and
kinetics of the interaction between Ni90Ti10 alloy thin
film and 6H-SiC single crystal,” J. Mater. Res. 1998,
13, 3247-3255.
54.J. F. Lin, J. P. Bird, Z. He, P. A. Bennett, and D. J.
Smith, “Signatures of quantum transport in self-
assembled epitaxial nicke silicide nanowires,” Appl.
Phys. Lett. 2004, 85, 281-283.
55.Y. L. Chueh, L. J. Chou, S. L. Cheng, L. J. Chen, and C.
J. Tsai, “Synthesis and characterization of metallic
TaSi2 nanowires,” Appl. Phys. Lett. 2005, 87, 223113.
56.C. A. Decker, R. Solanki, J. L. Freeouf, and J.
R. Carruthers, “Directed growth of nickel silicide
nanowires,” Appl. Phys. Lett. 2004, 84, 1389-1391.
57.S. Y. Chen, and L. J. Chen, “Nitride-mediated epitaxy
of self -assembled NiSi2 nanowires on (001)Si,” Appl.
Phys. Lett. 2005, 87, 253111.
58.M. Stevens, Z. He, D. J. Smith, and P. S. Bennent,
“Structure and orientation of epitaxial titanium
silicide nanowires determined by electron
microdiffraction,” J. Appl. Phys. 2003, 93, 5670-5674.
59.J. Nogami, B. Z. Liu, M. V. Katkov, C. Ohbuchi, and N.
O. Birge, “Self-assembled rare-earth silicide nanowires
on Si(100),” Phys. Rev. B 2001, 63, 233305.
60.Y. Chen, D. A. Ohlberg, G. Medeiros-Ribeiro, A. Chang,
and R. S. Williams, “Self-assembled growth of epitaxial
erbium disilicide nanowires on silicon(001),” Appl.
Phys. Lett. 2000, 76, 4004-4006.
61.C. Preinesberger, S. K. Becker, S. Vandre, T. Kalka, and
M. Dahne, “Structure of DySi2 nanowires on Si(001),”
J. Appl. Phys. 2002, 91, 1695-1697.
62.J. Kim, and W. A. Anderson, “Spontaneous nickel
monosilicide nanowire formation by metal induced
growth,” Thin Solid Films 2005, 483, 60-65.
63.J. A. Kittl, D. A. Prinslow, P. P. Apte, and M. F. Pas,
“Kinetics and nucleation mode of the C49 to C54 phase
transformation in TiSi2 thin films on deep-sub-micron
n+ type polycrystalline silicon lines,” Appl. Phys.
Lett. 1995, 67, 2308-2310.
64.G. B. Kim, D.-J. Yoo, H. K. Baik, J. -M. Myoung, S. M.
Lee, S. H. Oh, and C. G. Park, “Improved thermal
stability of Nisilicide on Si (100) through reactive
deposition of Ni,” J. Vac. Sci. Technol. B 2003, 21,
319-322.
65.X. Q. Yan, H. J. Yuan, J. X. Wang, D. F. Liu, Z. P.
Zhou, Y. Gao, L. Song, L. F. Liu, W. Y. Zhou, G. Wang,
and S. S. Xie, “Synthesis and characerization of large
amount of branched Ni2Si nanowires,” Appl. Phys. A
2004, 79, 1853-1856.
66.K. S. Lee, Y. H. Mo, K. S. Nahm, H. W. Shim, E. K. Suh,
J. R. Kim, and J. J. Kim, “Anomalous growth and
characterization of carbon-coated nickel silicide
nanowires,” Chem. Phys. Lett. 2004, 384, 215-218.
67.Z. Zhang, P.-E. Hellstrom, M. Ostling, and S. L. Zhang,
“Electrically robust ultralong nanowires of NiSi, Ni2Si,
and Ni31Si12,” Appl. Phys. Lett. 2006, 88, 043104.
68.Y. Wu, J. Xiang, C. Yang, W. Lu, and C. M. Lieber,
“Single-crystal metallic nanowires and
metal/semiconductor nanowire heterostructures,” Nature
2004, 430, 61-65.
69.L. Dong, J. Bush, V. Chirayos, R. Solanki, and J. Jiao,
“Dielectrophoretically Controlled Fabrication of Single-
Crytal Nickel Silicide Nanowire Interconnects,” Nano
Lett. 2005, 5, 2112-2115.
70.J. M. Gibson, J. L. Batstone, R. T. Tung, and F. C.
Unterwald, “Origin of A- or B- Type NiSi2 Determined by
In Situ Transmission Electron Microscopy and Diffraction
during Growth,” Phys. Rev. Lett. 1988, 60, 1158-1161.
71.M. W. Kleinschmit, M. Yeadon, and J. M. Gibson,
“Nucleation of single-crystal CoSi2 with oxide-mediated
epitaxy,” Appl. Phys. Lett. 1999, 75, 3288-3290.
72.T. Yokota, M. Murayama, and J. M. Howe, “In situ
transmission Electron Microscopy Investigation of
Melting in Submicron Al-Si Slloy Particles under
Electron-Beam Irradiation,” Phys. Rev. Lett. 2003, 91,
265504.
73.M. Tanaka, F. Chu, M. Shimojo, M. Takeguchi, K.
Mitsuishi, and K. Furuya, “Position-and size-controlled
fabrication of iron silicide nanorods by electron-beam-
induced deposition using an ultrahigh-vacuum
transmission electron microscope,” Appl. Phys. Lett.
2005, 86, 138104.
74.V. Teodorescu, L. Nistor, H. Bender, A. Steegen, A.
Lauwers, K. Maex, and J. V. Landuyt, “In situ
transmission electron microscopy study of Nisilicide
Phases formed on (001) Si active lines,” J. Appl. Phys.
2001, 90, 167-174.
75.M. Aizawa, A. M. Cooper, M. Mala, and J. M. Buriak,
“Silver Nano-Inukshuks on Germanium,” Nano Lett. 2005,
5, 815-819.
76.K. Q. Peng, and J. Zhu, “Simultaneous gold deposition
and formation of silicon nanowire,” J. Electroanal.
Chem. 2003, 558, 35-39.
77. J. A. Kittl, A. Lauwers, M. A. Pawlak, M. J. H. van
Dal, A. Veloso, K. G. Anil, G. Pourtois, C. Demeurisse,
T. Schram, B. Brijs, M. de Potter, C. Vrancken, and K.
Maex, “Ni fully silicide gates for 45 nm CMOS
applications,” Microelecron. Eng. 2005, 82, 441-448.
78. K. N. Tu, “Analysis of marker motion in thin-film
silicide formation,” J. Appl. Phys. 1977, 48, 3379-3382.
79. Y. Ding and Z. L. Wang, “Structure Analysis of
Nanowires and Nanobelts by Transmission Electron
Microscopy,” J. Phys. Chem. B 2004, 108, 12280-12291.