研究生: |
邱柏崴 |
---|---|
論文名稱: |
光連結系統之高速收發端電路與交換機設計及量測 Design and Characterization of High-speed Optical Transceiver and STDM Switch with OI Interface |
指導教授: | 徐碩鴻 |
口試委員: |
邱煥凱
李明昌 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 68 |
中文關鍵詞: | 轉阻放大器 、調變器驅動電路 、限制放大器 、STDM交換機 、光連結系統 、圖騰柱輸出級 、ESD電路 、CML電路 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此論文著重於設計、實作以及量測光連結系統收發端電路。第二中第三章著重於光連結系統接收電路及發射端電路並且實際應用於光元件進行光性量測。第四章提出80 Gb/s 4×4光電界面高速交換機。最後一章會做出結論並且提出未來可行的發展目標。
第二章裡,10 Gb/s 小面積無電感轉阻放大器實作於CMOS 0.18 µm製程。此電路達在0.22 pF的輸入電容負載達到頻寬7 GHz,在供應電壓1.8 V下消耗功率為9 mW。轉阻增益達到55.3 dBΩ,而核心電路面積僅為0.0065 mm2。在光性眼圖量測上此設計可以應用在10 Gb/s的光連結系統。
第三章裡,一個40 Gb/s 調變器驅動電路CMOS 40 nm製程。此電路設計應用於與University of Southampton Optoelectronics Research Center的調變器整合,量測結果此調變器驅動電路操作在12.5 Gb/s負載50 Ω的情形下可以達到1 V的輸出擺幅。在供應電壓4 V下消耗功率為377 mW,而核心電路面積僅為0.012 mm2。
第四章裡,本論文提出一個4x4 80 Gb/s STDM光電介面交換機實作於CMOS 40 nm製程。此交換機整合於光連結收發端電路,每路最高傳輸速度為20 Gb/s,光電接收端提供69.6 dBΩ 轉阻增益與21 GHz頻寬。光電發射端部分,提供8 mA 的驅動電流,整體交換機消耗功率為450 mW。靜電保護電路也被使用以防止靜電效應。
In this thesis, we focus on design, implementation, and characterization of the high speed optical transceiver for optical interconnect applications. The second and third chapters describe optical transceiver front-end, which not only design and implement of the integrated circuits but also demonstrate the optical measurements with optical devices, including photo detector (PD) and MD (Modulator Diode). The forth chapter proposes an 80 Gb/s 4×4 high speed switch combined with optical transceiver circuits with O/E interface for optical interconnect applications. Finally, the conclusion and future prospect are given.
In Chapter 2, a compact 10-Gb/s inductorless transimpedance amplifier (TIA) packaged with avalanche photo detector (PD) has been implemented and demonstrated with optical measurements. The proposed TIA fabricated in 0.18-μm CMOS achieves a 3-dB bandwidth of 7 GHz with termination of photodiode capacitance of 0.22 pF, consuming only 9 mW under the supply voltage a of 1.8 V. The transimpedance gain attains 55.3 dBΩ with a core area as small as 0.0065 mm2. The optical measurement has been demonstrated, which shows well opened eye diagram at a data rate of 10 Gb/s.
In Chapter 3, a compact 40 Gb/s inductorless Modulator driver is proposed and implemented in 40 nm CMOS for the purpose of integration with the silicon-based high speed modulator, provided by University of Southampton Optoelectronics Research Center. Measurement results demonstrate that this driver, operating at 12.5 Gb/s, can achieve a 1V swing under the termination of 50 Ω. The circuit operates at 4 V supply voltage and consumes 377mW with a core area only 0.012 mm2.
In Chapter 4, a 4×4 80 Gb/s Symmetric Time Division Multiplexing (STDM) O/E interface switch implemented in CMOS 40nm process is proposed. The maximum transmission speed is 20 Gb/s in each channel. In this switch, we combine the optical transceiver to achieve a fully-integrated high-speed switch with O/E interface for optical interconnect application. The optical receiver can generate a 69.6 dBΩ transimpedacne gain with a 21 GHz bandwidth. The transmitter provides 8 mA driving current for the laser diode. The total power consumption of the STDM switch is 450 mW at the supply voltage of 1.5 V. The extra electrostatic discharge (ESD) protection circuit is adopted in this chip to avoid transistors damage.
[1] C. Kromer et al., “A 100-mw 4x10 Gb/s transceiver in 80-nm CMOS for high-density optical interconnects,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2667–2679, Dec. 2005.
[2] C. Schow, and et al., “A <5mW/Gb/s/link, 16_10Gb/s Bi-Directional Single-Chip CMOS Optical Transceiver for Board-Level Optical Interconnects,” IEEE ISSCC, Feb. 2008.
[3] A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[4] T. Takemoto et al.,"A Compact 4 x 25-Gb/s 3.0 mW/Gb/s CMOS-Based Optical Receiver for Board-to-Board Interconnects," IEEE J.Lightwave Tech., vol. 28, pp. 3343-3350, 2010.
[5] I. Young, E. Mohammed, J. Liao, A. Kern, S. Palermo, B. Block, M. Reshotko, and P. Chang, “Optical I/O technology for tera-scale computing,” in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC), ISSCC Dig. Tech. Papers, Feb. 2009, pp. 468–469.
[6] M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 12, no. 6, pp. 1699-1705, Nov./Dec. 2006.
[7] R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S. Wang, R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proceedings of the IEEE, vol. 96, no. 2, pp. 230-247, Feb. 2008.
[8] D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proceedings of the IEEE, vol. 97, no. 7, pp. 1166-1185, July 2009.
[9] K. Ohashi, K. Nishi, T. Shimizu, M. Nakada, J. Fujikata, J. Ushida, S. Torii, K. Nose, M. Mizuno, H. Yukawa, M. Kinoshita, N. Suzuki, A. Gomyo, T. Ishi, D. Okamoto, K. Furue, T. Ueno, T. Tsuchizawa, T. Watanabe, K. Yamada, S. Itabashi, and J. Akedo, “On-chip optical interconnect,” Proceedings of the IEEE, vol. 97, no. 7, pp. 1186-1198, July 2009.
[10] A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proceedings of the IEEE, vol. 97, no. 7, pp. 1337-1361, July 2009.
[11] S. Galal and B. Razavi, “40-Gb/s amplifier and ESD protection circuit in 0.18-μm CMOS technology,” IEEE Journal of solid-state circuits, vol. 39, no. 12, pp. 2389-2396, Dec. 2004.
[12] C.-F. Liao and S.-I. Liu, “40 Gb/s transimpedance-AGC amplifier and CDR circuit for broadband data receivers in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 3, pp. 642–655, Mar. 2008.
[13] J.-D. Jin and S. S. H. Hsu, “A 40-Gb/s transimpedance amplifier in 0.18- um CMOS technology,” IEEE J. Solid-State Circuits, vol. 43,no. 6, pp. 1449–1457, Jun. 2008.
[14] Shih-Hao Huang, Wei-Zen Chen, Yu-Wei Chang, and Yang-Tung Huang, “A 10-Gb/s OEIC with meshed spatially-modulated photo detector in 0.18- m CMOS technology,” IEEE Journal of Solid-State Circuits, vol. 46, no. 5, pp. 1158-1169, May 2011.
[15] D.-U. Li and C.-M. Tsai, “10-Gb/s modulator drivers with local feedback networks,” IEEE J. Solid-State Circuits, vol. 41, no. 5, pp. 1025–1030, May 2006.
[16] Joohwa Kim; Buckwalter, J.F., "A 40-Gb/s Optical Transceiver Front-End in 45 nm SOI CMOS," Solid-State Circuits, IEEE Journal of , vol.47, no.3, pp.615,626, March 2012.
[17] E. Sackinger, Broadband Circuits for Optical Fiber Communication. New York: Wiley Interscience, 2005.
[18] S. Park and H. Yoo, “1.25-Gb/s regulated cascode CMOS transimpedance amplifier for gigabit Ethernet application,” IEEE Journal of Solid-State Circuits, vol. 39, no. 1, pp. 112-21, Jan. 2004.
[19] 卓偉漢, “應用於無線通訊系統與光通訊系統接受器之前端放大器,”國立清華大學電子工程研究所碩士論文,2010。
[20] S. Park and H. Yoo, “1.25-Gb/s regulated cascode CMOS transimpedance amplifier for gigabit Ethernet application,” IEEE Journal of Solid-State Circuits, vol. 39, no. 1, pp. 112-21, Jan. 2004.
[21] C. Wu, C. Lee, W. Chen, and S. Liu, “CMOS wideband amplifiers using multiple inductive-series peaking technique,” IEEE Journal of Solid-State Circuits, vol. 40, no. 2, pp. 548-552, Feb. 2005.
[22] J. Jin and S. Hsu, “A 75-dBΩ 10-Gb/s transimpedance amplifier in 0.18-μm CMOS technology,” IEEE Photonics Technology Letters, vol. 20, no. 24, pp. 2177-2179, Dec. 2008.
[23] Behzad Razavi, “Design of ICs for optical Communications”.
[24] Chia-Ming Tsai; Mao-Cheng Chiu, "A 10Gb/s Laser-Diode Driver with Active Back-Termination in 0.18μm CMOS," Solid-State Circuits Conference, 2008. ISSCC 2008. Digest of Technical Papers. IEEE International , vol., no., pp.222,608, 3-7 Feb. 2008
[25] S. Galal and B. Razavi, “10-Gb/s limiting amplifier and laser/modulator driver in 0.18 µm CMOS technology,” IEEE J. Solid-State Circuits, vol. 38, no. 12, pp. 2138–2146, Dec. 2003.
[26] C. S. Chang, and D. S. Lee, “Principles, Architectures and Mathematical Theories of High Performance Switches,” published by National Tsing Hua University Press, Chapter 2 and Chapter 3, May, 2008.
[27] N. McKeown, “Scheduling algorithms for input-queued cell switches,” Ph.D. Thesis. University of California at Berkeley, 1995.
[28] C. S. Chang, D. S. Lee and Y. S. Jou, “Load balanced Birkhoff-von Neumann switches, part I: one-stage buffering,” Computer Communications, Vol. 25, pp. 611-622, 2002.
[29] C. S. Chang, D. S. Lee and C. M. Lien, “Load balanced Birkhoff-von Neumann switches, part II: multi-stage buffering,” Computer Communications, Vol. 25, pp. 623-634, 2002
[30] Chiu, C.-T.; Hsu, Y.-H.; Lai, W.-C.; Wu, J.-M.; Hsu, S. S. H.; Lin, Y.-S.; Chen, F.-T.; Kao, M.-S.; Hsu, Y.-S., "Low Propagation Delay Load-Balanced 4 ⨉ 4 Switch Fabric IC in 0.13-μm CMOS Technology," Very Large Scale Integration (VLSI) Systems, IEEE Transactions on , vol.PP, no.99, pp.1,1, 0.
[31] H. Y. Huang, J. C. Chien, and L. H. Lu, “A 10-Gb/s inductorless CMOS limiting amplifier with third-order interleaving active feedback,” IEEE J. Solid-State Circuits, vol. 42, no. 5, pp. 1111–1120, May 2007.
[32] 陳聖文, “應用於光連結系統之高速前端電路與光電介面交換機設計,”國立清華大學電子工程研究所碩士論文,2012。
[32] S. Shekhar, J. S.Walling, and D. J. Allstot, “Bandwidth extension techniques for CMOS amplifiers,” IEEE J. Solid-State Circuits, vol. 41, no. 11, pp. 2424–2439, Nov. 2006.
[33] Proesel, J.; Schow, C.; Rylyakov, A., "25Gb/s 3.6pJ/b and 15Gb/s 1.37pJ/b VCSEL-based optical links in 90nm CMOS," Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2012 IEEE International , vol., no., pp.418,420, 19-23 Feb. 2012
[34] Liu, F.Y.; Patil, D.; Lexau, J.; Amberg, P.; Dayringer, M.; Gainsley, J.; Moghadam, H.F.; Xuezhe Zheng; Cunningham, J.E.; Krishnamoorthy, A.V.; Alon, E.; Ho, R., "10-Gbps, 5.3-mW Optical Transmitter and Receiver Circuits in 40-nm CMOS," Solid-State Circuits, IEEE Journal of , vol.47, no.9, pp.2049,2067, Sept. 2012
[35] Yunzhi Dong; Martin, K.W., "A High-Speed Fully-Integrated POF Receiver With Large-Area Photo Detectors in 65 nm CMOS," Solid-State Circuits, IEEE Journal of , vol.47, no.9, pp.2080,2092, Sept. 2012
[36] Buckwalter, J.F.; Xuezhe Zheng; Guoliang Li; Raj, K.; Krishnamoorthy, A.V., "A Monolithic 25-Gb/s Transceiver With Photonic Ring Modulators and Ge Detectors in a 130-nm CMOS SOI Process," Solid-State Circuits, IEEE Journal of , vol.47, no.6, pp.1309,1322, June 2012
[37] Georgas, M.; Orcutt, J.; Ram, R.J.; Stojanovic, V., "A Monolithically-Integrated Optical Receiver in Standard 45-nm SOI," Solid-State Circuits, IEEE Journal of , vol.47, no.7, pp.1693,1702, July 2012