研究生: |
張書維 Jang, Shu-Uei |
---|---|
論文名稱: |
氣動式微閥門晶片輔助微量多氯聯苯與重金屬之快速分析研究 Multilayer microfluidic chip with pneumatic microvalves assisting for rapid analysis of trace polychlorinated biphenyls and heavy metals |
指導教授: |
凌永健
Ling, Yong-Chien |
口試委員: |
黃賢達
王先知 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 62 |
中文關鍵詞: | 微晶片 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
環境中重金屬與多氯聯苯會對人體健康及自然生態造成極大的影響,傳統重金屬與多氯聯苯分析方法多費時、費力、費劑。微流體實驗室晶片(Lab on a Chip) 微小化研究和操作尺度,在化學分析的應用極廣,從樣品前處理、樣品分離、試劑反應、至偵測等複雜功能,整合前述步驟於一小面積微流體晶片上,減少試劑用量,加快分析速度,達到綠色分析化學目標。本實驗利用工程設計整合氣動式微閥門晶片測試新穎材料如石墨烯(graphene)和磁性奈米粒子(MNPs-PAA),進行多氯聯苯與重金屬(Mn2+, Co2+, Cu2+, Pb2+ )之吸/脫附研究。使用非光阻式之壓克力板為母模,利用自動化控制氣動式微流閥系統,以操控吸/脫附反應。實驗結果顯示,MNPs-PAA可應用在微流體晶上,並證明graphene材料從成功製造出以來首次對PCBs之吸附,較傳統方法快速、低廉、環保,有助於綠色的綠色奈米分析化學的推廣。
Chapter1
1. Caliper Technologies Corp., www.calipertech.com.
2. A. Manz, N. Graber and H. M. Widmer, Sensors and Actuators B: Chemical, 1990, 1, 244-248.
3. H. Becker and C. Gärtner, ELECTROPHORESIS, 2000, 21, 12-26.
4. S. Zhao, H. Cong and T. Pan, Lab on a Chip, 2009, 9, 1128.
5. K. Croes, K. Van Langenhove, M. Elskens, M. Desmedt, E. Roekens, A. Kotz, M. S. Denison and W. Baeyens, Chemosphere, 2011, 82, 718-724.
6. D. Wang and Q. X. Li, Mass Spectrom Rev, 2010, 29, 737-775.
7. C. Basheer, G. Balaji, S. H. Chua, S. Valiyaveettil and H. K. Lee, Journal of Chromatography A, 2011, 1218, 654-661.
8. F. J. Santos and M. T. Galceran, TrAC Trends in Analytical Chemistry, 2002, 21, 672-685.
9. W. Y. Hsu, W. D. Lin, W. L. Hwu, C. C. Lai and F. J. Tsai, Anal Chem, 2010, 82, 6814-6820.
10. Z. G. Yu, Z. Qin, H. R. Ji, X. Du, Y. H. Chen, P. Pan, H. Wang and Y. Y. Liu, Chromatographia, 2010, 72, 1073-1081.
11. S. Garaj, W. Hubbard, A. Reina, J. Kong, D. Branton and J. A. Golovchenko, Nature, 2010, 467, 190-U173.
12. A. K. Geim, Science, 2009, 324, 1530-1534.
13. A. Mechlinska, L. Wolska and J. Namiesnik, Trac-Trend Anal Chem, 2010, 29, 820-831.
14. A. V. Herrera-Herrera, M. Asensio-Ramos, J. Hernandez-Borges and M. A. Rodriguez-Delgado, Trac-Trend Anal Chem, 2010, 29, 728-751.
15. M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer and S. R. Quake, Science, 2000, 288, 113-116.
16. C. Zhang, D. Xing and Y. Li, Biotechnology Advances, 2007, 25, 483-514.
17. K. Hosokawa and R. Maeda, Journal of Micromechanics and Microengineering, 2000, 10, 415.
18. J. Go, Sensors and Actuators A: Physical, 2004, 114, 438-444.
19. L. He, International Journal of Solids and Structures, 2004, 41, 847-857.
20. C. Wang and G. Lee, Biosensors and Bioelectronics, 2005, 21, 419-425.
21. S. D. Gillmor, B. J. Larson, J. M. Braun, C. E. Mason, L. E. Cruz-Barba, F. Denes and M. G. Lagally, Low-contact-angle polydimethyl siloxane (PDMS) membranes for fabricating micro-bioarrays, 2002.
22. B. E. Slentz, N. A. Penner and F. E. Regnier, Journal of Chromatography A, 2002, 948, 225-233.
23. S.-Y. Yang, J.-L. Lin and G.-B. Lee, Journal of Micromechanics and Microengineering, 2009, 19, 035020.
24. V. M. Abraham and J. B. C. Lynn, Journal of Chromatography A, 1997, 790, 131-141.
Chapter2
1. A. E. Holliday and D. Beauchemin, Journal of Analytical Atomic Spectrometry, 2003, 18, 1109-1112.
2. O. T. Butler, W. R. L. Cairns, J. M. Cook and C. M. Davidson, Journal of Analytical Atomic Spectrometry, 2010, 25, 103-141.
3. J. H. Wang and E. H. Hansen, Trac-Trend Anal Chem, 2003, 22, 836-846.
4. P. L. Lee, Y. C. Sun and Y. C. Ling, Journal of Analytical Atomic Spectrometry, 2009, 24, 320-327.
5. M. Murakami and N. Furuta, Analytica Chimica Acta, 2006, 556, 423-429.
6. L. Marle and G. M. Greenway, Trac-Trend Anal Chem, 2005, 24, 795-802.
7. G. Pearson and G. Greenway, J. Anal. Atom. Spectrom., 2007, 22, 657-662.
8. H. Becker and C. Gartner, Electrophoresis, 2000, 21, 12-26.
9. B. S. Ebarvia, C. A. Binag and F. Sevilla, Analytical and Bioanalytical Chemistry, 2004, 378, 1331-1337.
10. Q. Zhang, S. Zeng, B. Lin and J. Qin, J Mater Chem, 2011, 21, 2466-2469.
11. Y. Wang, M. L. Chen and J. H. Wang, Journal of Analytical Atomic Spectrometry, 2006, 21, 535-538.
12. E. H. Hansen and M. Miro, Trac-Trend Anal Chem, 2007, 26, 18-26.
13. F. A. Li, J. L. Huang, S. Y. Shen, C. W. Wang and G. R. Her, Anal Chem, 2009, 81, 2810-2814.
14. M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer and S. R. Quake, Science, 2000, 288, 113-116.
15. C. Zhang, D. Xing and Y. Li, Biotechnology Advances, 2007, 25, 483-514.
16. N. Godino, D. Snakenborg, J. P. Kutter, J. Emneus, M. F. Hansen, F. X. Munoz and F. J. del Campo, Microfluidics and Nanofluidics, 2010, 8, 393-402.
17. Y. J. Xu, G. Weinberg, X. Liu, O. Timpe, R. Schlogl and D. S. Su, Adv Funct Mater, 2008, 18, 3613-3619.
18. J. S. Hu, L. S. Zhong, W. G. Song and L. J. Wan, Adv Mater, 2008, 20, 2977-2982.
19. Y. Liu, Y. Li and X. P. Yan, Adv Funct Mater, 2008, 18, 1536-1543.
20. K. Ghule, A. V. Ghule, B. J. Chen and Y. C. Ling, Green Chem, 2006, 8, 1034-1041.
21. D. Kara, A. Fisher and S. J. Hill, Analyst, 2006, 131, 1232-1240.
22. S. D. Cekic, H. Filik and R. Apak, Analytica Chimica Acta, 2004, 505, 15-24.
23. A. Ramesh, K. R. Mohan and K. Seshaiah, Talanta, 2002, 57, 243-252.
24. W. Bashir and B. Paull, Journal of Chromatography A, 2002, 942, 73-82.