研究生: |
黃詩涵 Huang, Shih-Han |
---|---|
論文名稱: |
基於支持向量機篩選具保留性miRNA標靶之流程 A conservation approach for miRNA target filtration based on support vector machine |
指導教授: |
唐傳義
Tang, Chuan-Yi |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊系統與應用研究所 Institute of Information Systems and Applications |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 38 |
中文關鍵詞: | 微小RNA 、標靶 、支持向量機 、標靶預測 、標靶篩選 、微小RNA標靶 |
外文關鍵詞: | miRNA target, microRNA target, support vector machine, svm, target prediction, filter |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
miRNA為長度約20-25nt的非編碼RNA,在生物體內扮演轉譯調控因子,可以調節或抑制蛋白質的表現,近年來被發現與一些癌症及疾病的機轉有關,因此尋找miRNA的標靶物成為近幾年熱門的研究之一;本研究為單一miRNA設計一套流程,將特定單一miRNA過度表現情況下的mRNA microarray作為輸入資料,根據目前已知被證實的標靶,經過支持向量機的訓練來達到判斷是否為標靶的分類效果,並加入物種保留性的概念,在人與老鼠之間留下共同,以過濾現有的多半以序列比對、能量自由度及結構等資訊做為篩選條件的miRNA標靶預測工具所預測出的結果,達到降低假陽性的目的;而研究結果所篩選出的基因,經過疾病通路比對,最低超過35%之路徑可得到過去現有的文獻支持,而能達到降低假陽性的目的。
MicroRNAs are a class of small non-coding RNAs which play important regulatory roles in animals and plants. They cause transcriptional cleavage or translational repression through binding their target mRNAs. MicroRNAs affect a variety of cellular processes such as development, cell proliferation, apoptosis, and stress response. Thus identification of mRNA targets is an essential step to understand microRNA functions.
Currently several microRNA target prediction tools have been developed. The majority of these algorithms are based on the sequence alignment or the minimum free energy of the hybridization. However, due to the omission of gene expression information in the screening process, a number of candidate targets could be false positives which are too large to validate.
In this work, a filtering strategy which was implemented based on SVM machine learning has been built in order to reduce the false positives. Information of sequence alignment retrieved from existing database and microarray expression data were both used to classify mRNA candidates into non-target or target group by SVM, trying to separate microRNA target genes from non-target genes. Besides, the concept of conservation between species has been included to mitigate the problem of noisy data then decrease false positive predictions.
1. Lee, R.C.; Feinbaum, R.L.; Ambros, V.; ( 1993). “The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14”. Cell. 75: 843–854.
2. Reinhart, B.J.; Slack, F.J.; Basson, M.; Pasquinelli, A.E.; Bettinger, J.C.; Rougvie, A.E.; Horvitz, H.R.; Ruvkun, G.; (2000). “The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans”. Nature. 403(6772): 901–906.
3. He, L.; Hannon, G.J.; (2004). “MicroRNAs: small RNAs with a big role in gene regulation”. Nat Rev Genet. 5: 522–531
4. Lee, Y.; Kim, M.; Han, J.; et al.; (2004). “MicroRNA genes are transcribed by RNA polymerase II”. EMBO J. 23: 4051–4060.
5. Wang, X.J.; Reyes, J.L.; Chua N.H.; Gaasterland, T.; (2004). “Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets”. Genome Biol. 5(9): R65.
6. Moxon, S.; Jing, R.; Szittya, G.; et al.; (2008). “Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening”. Genome Res. 18(10): 1602–1609.
7. Stark, A.; Brennecke, J.; Bushati, N.; Russell, R.B.; Cohen, S.M.; (2005). “Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3'UTR evolution”. Cell. 123(6): 1133–1146.
8. Place, R.F.;, Li, L.C.; Pookot, D.; Noonan, E.J.; Dahiya, R.; (2008). ”MicroRNA-373 induces expression of genes with complementary promoter sequences”. Proc. Natl. Acad. Sci. U.S.A. 105(5): 1608–1613.
9. Brennecke, J.; Stark, A.; Russell, R.B.; Cohen, S.M.; (2005) “Principles of MicroRNA–Target Recognition”. PLoS Biol. 3(3): e85.
10. Altuvia, Y.; Landgraf, P.; Lithwick, G.; Elefant, N.; Pfeffer, S.; Aravin, A.; Brownstein, M.J.; Tuschl, T.; Margalit, H.; (2005). “Clustering and conservation patterns of human microRNAs”. Nucleic Acids Res. 33(8): 2697–2706.
11. Lagos-Quintana, M.; Rauhut, R.; Yalcin, A.; Meyer, J.; Lendeckel, W.; Tuschl, T.; (2002). “Identification of tissue-specific microRNAs from mouse”. Curr. Biol. 12(9): 735–739.
12. Hudder, A.; Novak, R.F.; (2008) “miRNAs: effectors of environmental influences on gene expression and disease”. Toxicol. Sci. 103: 228-240.
13. Selbach, M.; Schwanhausser, B.; Thierfelder, N.; Fang, Z.; Khanin, R.; Rajewsky, N.; (2008) “Widespread changes in protein synthesis induced by microRNAs”. Nature. 455: 58-63.
14. Vapnik, V.; (1995). “The Nature of Statistical Learning Theory”. Springer-Verlag, New York.
15. Chang, C.C.; Lin, C.J.; (2003). “LIBSVM: a library for Support Vector Machines”. [http://www.csie.ntu.edu.tw/~cjlin/libsvm]; Tech. rep., Department of Computer Science, National Taiwan University.
16. Keerthi, S.S.; Lin, C.J.; (2003). “Asymptotic behaviors of support vector ma-chines with Gaussian kernel”. Neural Computation. 15(7): 1667–1689.
17. Kohavi, R.; (1995). “A study of cross-validation and bootstrap for accuracy estimation and model selection”. Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence. 2(12): 1137–1143.
18. MacQueen, J.B.; (1967). “Some Methods for classification and Analysis of Multivariate Observations”. Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, University of California Press. 1: 281–297.
19. Hartigan, J.A.; Wong, M.A.; (1979). “A K-Means Clustering Algorithm”. Applied Statistics. 28(1): 100-108.
20. Lim, L.P.; Lau, N.C.; Garrett-Engele, P.; Grimson, A.; Schelter, J.M.; Castle, J.; Bartel, D.P.; Linsley P.S.; Johnson, J.M.; (2005). “Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs”. Nature. 433: 769-773.
21. Ritchie, W.; Rajasekhar, M.; Flamant, S.; Rasko, J.E.J.; (2009). “Conserved Expression Patterns Predict microRNA Targets”. PLoS Comput Biol. 5(9): e1000513. doi:10.1371/journal.pcbi.1000513.
22. Haflidadottir, B.S.; Bergsteinsdottir, K.; Praetorius, C.; Steingrimsson, E.; (2010). “miR-148 Regulates Mitf in Melanoma Cells”. PLoS ONE. 5(7): e11574. doi:10.1371/journal.pone.0011574.
23. Silber, D.A.; Lim, C.; Petritsch, ; et al.; “miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cellsand induce differentiation of brain tumor stem cells”. BMC Medicine. 6(14): 1-17.
24. Iria, V.; Miren, M.; Nerea, M.; Ana, C,; et al.; (2010). “Silencing of hsa-miR-124 by EVI1 in cell lines and patients with acute myeloid leukemia”. PNAS. 107: E167-E168.
25. Torrisani, J.; Bournet, B.; Rieu, M.C.; Bouisson, M.; Souque, A.; et al.; (2009) “let-7 MicroRNA transfer in pancreatic cancer-derived cells inhibits in vitro cell proliferation but fails to alter tumor progression.” Hum Gene Ther. 20: 831–844.
26. Takamizawa, J.; Konishi, H.; Yanagisawa, K.; Tomida, S.; Osada, H.; Endoh, H.; Harano, T.; Yatabe, Y.; Nagino, M.; Nimura, Y.; Mitsudomi, T.; Takahashi, T.; (2004). “Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival”. Cancer Res. 64: 3753-3756.
27. Ruzzo1, A.; Canestrari1, E.; Galluccio1, N.; et al.; (2011). "Role of KRAS let-7 LCS6 SNP in metastatic colorectal cancer patients" Ann Oncol. 22(1): 234-235.
28. Schultz, J.; Lorenz, P.; Gross, G.; Ibrahim, S.; Kunz, M.; (2008). “MicroRNA let-7b targets important cell cycle molecules in malignant melanoma cells and interferes with anchorage-independent growth”. Cell Res. 18:549-557.