研究生: |
莊亞璇 Chuang, Ya-Hsuan |
---|---|
論文名稱: |
電化學阻抗式肝功能生物感測器 Electrical Impedimetric Biosensors for Liver Function Detection |
指導教授: |
游萃蓉
Yew, Tri-Rung |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 84 |
中文關鍵詞: | 生物感測器 |
外文關鍵詞: | Biosensor |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本研究中利用金導線陣列製作新穎之生物感測器,藉由量測肝功能重要指標-人類血清蛋白 (human serum albumin, HSA) ,期待未來整合於生物晶片中,用來即時檢測肝功能健康狀況。
在本研究中生物感測器製備方式,首先利用半導體製程製備生物感測器,其金電極間玻璃區域,以3-氨丙基三乙氧基矽烷 (3-aminopropyltriethoxysilane, APTES) 進行表面改質,使玻璃表面具有生物相容性後,依序固定上人類血清蛋白抗體 (anti-human serum albumin, AHSA) 、脫脂奶粉阻斷劑,以作為待測物人類血清蛋白 (HSA) 之接合與檢測。
在人類血清蛋白之感測與定量分析上,乃利用電化學阻抗譜 (Electrochemical Impedance Spectroscopy, EIS) ,在交流電下,直接量測接合於相鄰兩金電極間玻璃上之人類血清蛋白阻抗特性,藉由不同濃度貢獻之電容性阻抗變化量,定量分析人類血清蛋白之濃度。結果發現,當人類血清蛋白濃度越高,其貢獻的阻抗越大,且阻抗變化與人類血清蛋白濃度之對數 (log) 數值間呈線性關係;除此之外,此電化學阻抗式人類血清蛋白生物感測器,靈敏度可到達2□10-4 mg/ml。
本研究利用電化學阻抗式機制,用以定量檢測人類血清蛋白濃度,並成功證明此機制之可行性,且在感測器僅需利用單層黃光製程製作金電極陣列,並可直接製作於生物晶片上。因具備感測過程便利、易整合於生物晶片、分析結果可即時輸出、低成本等優點,對肝功能檢測上有極大應用價值。
[1] S. R. Khetani, and S. N. Bhatia, “Microscale Culture of Human Liver Cells for Drug Development”, Nat. Biotechnol., 2008, 26(1), 120-126
[2] D. C. Rockeyl, and D. M. Bissell, “Noninvasive Measures of Liver Fibrosis”, Hepatology, 2006, 43(2), S113-S120
[3] I. Moser, G. Jobst, P. Svasek, M. Varahram, and G. Urban, “Rapid Liver Enzyme Assay with Miniaturized Liquid Handling System Comprising Thin Film Biosensor Array”, Sensor Actuat. B, 1997, 44, 377-380
[4] L. C. Clark, Jr., and C. Lyons, “Electrode Systems for Continuous Monitoring in Cardiovascular Surgery”, Ann. NY. Acad. Sci., 1965, 102(1), 29-45
[5] J. H. T. Luong, K. B. Male, and J. D. Glennon, “Biosensor Technology: Technology Push versus Market Pull”, Biotechnol. Adv., 2008, 26, 492-500
[6] N. J. Ronkainen, H. B. Halsall, and W. R. Heineman, “Electrochemical Biosensors”, Chem. Soc. Rev., 2010, 39, 1747-1763
[7] P. Vadgama and P. W. Crump, “Biosensors: Recent Trends”, Analyst, 1992, 117, 1657-1670
[8] D. Grieshaber, R. MacKenzie1, J. Vörös1, and E. Reimhult, “Electrochemical Biosensors-Sensor Principles and Architectures”, Sensors, 2008, 8, 1400-1458
[9] M. J. Song, D. H. Yun, N. K. Min, and S. I. Hong, “Electrochemical Biosensor Array for Liver Diagnosis Using Silanization Technique on Nanoporous Silicon Electrode”, J. Biosci. Bioeng., 2007, 103(1), 32-37
[10] Y. C. Lu, Y. S. Chuang, Y. Y. Chen, A. C. Shu, H. Y. Hsu, H. Y. Chang, and T. R. Yew, “Bacteria Detection Utilizing Electrical Conductivity”, Biosens. Bioelectron., 2008, 23, 1856-1861
[11] R. H. Gattett and C. M. Grisham, “Biochemistry”, 2nd. Ed, Saunders college publishing, Fig. 7.31, 1995
[12] L. D. Mello and L. T. Kubota, “Review of the Use of Biosensors as Analytical Tools in the Food and Drink Industries”, Food Chem., 2002, 77, 237-256
[13] S. Sugio, A. Kashima, S. Mochizuki, M. Noda, and K. Kobayashi, “Crystal Structure for Human Serum Albumin at 2.5 a Resolution”, Protein Eng., 1999, 12(6), 439-446
[14] K. H. Ulrich, V. T. G. Chuang, and M. Otagiri, “Practical Aspects of the Ligand-Binding and Enzymatic Properties of Human Serum Albumin”, Biol. Pharm. Bull., 2002, 25(6), 695-704
[15] S. Curry, H. Mandelkow, P. Brick, and N. Franks, “Crystal Structure of Human Serum Albumin Complexed with Fatty Acid Reveals an Asymmetric Distribution of Binding Sites”, Nat. Struct. Biol., 1998, 5(9), 827-835
[16] C. E. Ha, J. S. Ha, A. G. Theriault, and N. V. Bhagavan, “Effects of Statins on the Secretion of Human Serum Albumin in Cultured HepG2 Cells”, J. Biomed. Sci., 2009, 16(32):1-10
[17] P. Angenendt, “Progress in Protein and Antibody Microarray Technology”, Drug Discov. Today, 2005, 10(7), 503-511
[18] W. P. Blackstock and M. P. Weir, “Proteomics: Quantitative and Physical Mapping of Cellular Proteins”, Trends Biotechnol., 1999, 17, 121-127
[19] 鍾楊聰,分子生物學,偉明圖書有限公司,2003
[20] S. B. Tolani, M. Craig, R. K. DeLong, K. Ghosh, and A. K. Wanekaya, “Towards Biosensors Based on Conducting Polymer Nanowires”, Anal. Bioanal. Chem., 2009, 393, 1225–1231
[21] C. J. Huang, C. C. Lu, T. Y. Lin, T. C. Chou, and G. B. Lee, “An Electrochemical Albumin-Sensing System Utilizing Microfluidic Technology”, J. Micromech. Microeng., 2007, 17, 835–842
[22] M. C. Chuang, C. C. Liu, and M. C. Yang, “An Electrochemical Tyrosinase-Immobilized Biosensor for Albumin—Toward a Potential Total Protein Measurement”, Sensor Actuat. B, 2006, 114, 357–363
[23] K. Y. Park, Y. S. Sohn, C. K. Kim, H. S. Kim, Y. S. Bae, and S.Y. Choi, “Development of FET-Type Albumin Sensor for Diagnosing Nephritis”, Biosens. Bioelectron., 2008, 23, 1904-1907
[24] Y. H. Ahn, J. S. Lee, and Y. T. Chang, “Selective Human Serum Albumin Sensor from the Screening of a Fluorescent Rosamine Library”, J. Comb. Chem., 2008, 10, 376-380
[25] M. De, S. Rana, H. Akpinar, O. R. Miranda, R. R. Arvizo, U. H. F. Bunz, and V. M. Rotello, “Sensing of Proteins in Human Serum Using Conjugates of Nanoparticles and Green Fluorescent Protein”, Nat. Chem., 2009, 1, 461-465
[26] Bethyl Laboratories, Inc., Montgomery, TX, USA, Human Albumin ELISA Quantitation Set, http://www.bethyl.com/
[27] T. Y. Lin, C. H. Hu, and T. C. Chou, “Determination of Albumin Concentration by MIP-QCM Sensor”, Biosens. Bioelectron., 2004, 20, 75-81
[28] R. M. Pasternack, S. R. Amy, and Y. J. Chabal, “Attachment of 3-(Aminopropyl) Triethoxysilane on Silicon Oxide Surfaces: Dependence on Solution Temperature”, Langmuir, 2008, 24, 63-71
[29] V. Sivagnanam, A. Sayah, C. Vandevyver, and M. A. M. Gijs, “Micropatterning of Protein-Functionalized Magnetic Beads on Glass Using Electrostatic Self-Assembly”, Sensor Actuat. B, 2008, 132, 361-367
[30] N. Devaraj, M. Sheykhnazari, W. S. Warren, and V.P. Bhavanandan, “Differential Binding of Pseudomonas-Aeruginosa to normal and Cystic-Fibrosis Tracheobronchial Mucins”, Glycobiology, 1994, 4(3), 307-316
[31] N. K. Maiti, S. S. Saini, R. Singh, M. S. Oberoi, and S. N. Sharma, “An Improved Dot ELISA to Detect Fowl Adenovirus Type-1 Antigen”, Comp. Immunol. Microb., 1993, 16(3), 245-250
[32] A. R. Hambley, “Electrical Engineering: Principles & Applications”, 3rd. Ed, Pearson Education International publishing, 2005
[33] S. H. Cohen and M. L. Lightbody, Atomic force microscopy/scanning tunneling microscopy, Kluwer Academic Publishers, 1999
[34] 林敬二,林宗義,材料分析,美亞出版有限公司,1994
[35] G. Ziyatdinova, J. Galandova, and J. Labuda, “Impedimetric Nanostructured Disposable DNA-based Biosensors for the Detection of Deep DNA Damage and Effect of Antioxidants”, Int. J. Electrochem. Sci., 2008, 3, 223-235
[36] F. Patolsky, M. Zayats, E. Katz, and I. Willner, “Precipitation of an Insoluble Product on Enzyme Monolayer Electrodes for Biosensor Applications: Characterization by Faradaic Impedance Spectroscopy, Cyclic Voltammetry, and Microgravimetric Quartz Crystal Microbalance Analyses”, Anal. Chem., 1999, 71, 3171-3180
[37] 胡啟章,電化學原理與方法,五南圖書出版股份有限公司,2002
[38] R. Ehret, W. Baumann, M. Brischwein, A. Schwinde, K. Stegbauer, and B. Wolf, “Monitoring of Cellular Behavior Impedance Measurements on Interdigitated Electrode Structures”, Biosens. Bioelectron., 1997, 121(1), 29-41
[39] X. M. Ren and P. G. Pickup, “An Impedance Study of Electron Transport and Electron Transfer in Composite Polypyrrole+Polystyrenesulphonate Films”, J. Electroanal. Chem., 1997, 420, 251-257
[40] E. Brillas, P. L. Cabot, J. A. Garrido, M. Montilla, R. M. Rodriguez, and J. Carrasco, “Faradaic Impedance Behaviour of Oxidized and Reduced Poly (2,5-di- (-2-thienyl) -thiophene) Films”, J. Electroanal. Chem., 1997, 430, 133-140
[41] 邱碧秀,電子陶瓷材料,徐氏基金會出版,1996
[42] Abcam Inc., USA, http://www.abcam.com/