簡易檢索 / 詳目顯示

研究生: 鄭俊輝
Zheng,Jun-Hui
論文名稱: 冷原子中的合成規範場及自旋軌道耦合
Synthetic Gauge Field and Spin-orbit Coupling in Cold Atoms
指導教授: 王道維
Wang, Daw-Wei
口試委員: 郭西川
Gou, Shih-Chuan
米格爾
Cazalilla, Miguel
牟中瑜
Mou, Chung-Yu
陳柏中
Chen, Po-Chung
郭光宇
Guo, Guang-Yu
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 102
中文關鍵詞: 冷原子合成規範場自旋軌道耦合拓撲絕緣體
外文關鍵詞: Cold atoms, Synthetic gauge field, Spin-orbit coupling, Topological insulator
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文,我將討論不同系統中自旋軌道耦合的效應:旋量玻色-愛因斯坦凝聚系統,雙層費米系統,以及二維拓撲絕緣體系統。在旋量玻色-愛因斯坦凝聚系統中,我將主要討論自旋軌道耦合和兩體相互作用的混合效應。運用絕熱近似,我系統的研究了在合成規範場中旋量玻色-愛因斯坦凝聚的基態,激發態以及相關的效應。在雙層費米系統中,我主要考慮自旋-層耦合及超流的效應。通過映射到有效模型,我證明了在零溫下,加入層之間帶有自旋翻轉的隧穿項,可以大大提高超導配對的臨界磁場。在二維拓撲絕緣體中,我主要研究Kane-Mele模型,并考慮在鋸齒形邊界上單顆磁性雜質的效應。我得到Kane-Mele模型譜以及波函數的解析解并討論了它的電輸運性質。進一步構造了一維有效模型來描述該系統。


    In this thesis, I will discuss the effect of spin-orbit coupling in different systems: spinor Bose-Einstein Condensate (BEC) system, bilayer Fermionic system, and 2D topological insulator. In the spinor BEC system, I focus on the hybrid effect of spin-orbit coupling and two-body interaction. By using adiabatic approximation, I systematically investigate the ground state, elementary excitations and related effects of a BEC within a
    synthetic vector potential. In the bilayer Fermionic system, I consider the effect of spin-layer
    coupling and superfluidity. By mapping to an effective model, I demonstrate that at zero temperature
    the critical value of the magnetic field for pairing can be significantly increased by including a spin-flip tunnelling between layers. In the 2D topological insulator, I focus on the Kane-Mele (KM) Hubbard model and consider the effect of a single spin-flip impurity at the Zigzag edge. I analytically obtain the spectra and wavefunction of the KM model and then discuss its electronic transport property. Furthermore, I develop a low energy effective 1D model to describe the system.

    1 Introduction 1 1.1 Two-level toy model . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Artificial gauge field . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.1 Adiabatic approximation . . . . . . . . . . . . . . . . . . . . . 7 1.2.2 Validity of adiabatic approximation . . . . . . . . . . . . . . . 7 1.2.3 Simple example . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 Spin-orbit coupling vs. topological property . . . . . . . . . . . . . . 11 1.4 Structure of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2 Topological Condensate in an Interaction-induced Gauge Potential 14 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2 System Hamiltonian and its mean-field equation . . . . . . . . . . . . 17 2.2.1 Two-component GP equation . . . . . . . . . . . . . . . . . . 17 2.2.2 Interaction induced synthetic gauge field (Adiabatic approximation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3 Results in uniform space . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.1 Ferromagnetism in strong interaction limit . . . . . . . . . . . 22 2.3.2 Excitations and energetic instability of superfluid current (weak interaction limit) . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.4 Results in a harmonic trap . . . . . . . . . . . . . . . . . . . . . . . . 27 2.4.1 Coreless vortex-antivortex pair in the 2D trap . . . . . . . . . 29 2.4.2 Coreless vortex ring in the 3D trap . . . . . . . . . . . . . . . 31 2.5 Experiment measurement . . . . . . . . . . . . . . . . . . . . . . . . 32 2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3 Superconductivity Enhanced by Spin-flip Tunnelling in The Presence of A Magnetic Field 35 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.2 System and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.2.1 System Hamiltonian in original basis . . . . . . . . . . . . . . 38 3.2.2 Equivalent description in a rotated basis . . . . . . . . . . . . 39 3.2.3 Single-particle spectrum . . . . . . . . . . . . . . . . . . . . . 40 3.2.4 General framework in meanfield theory . . . . . . . . . . . . . 42 3.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.3.1 Single layer limit . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.3.2 Zero Raman coupling limit . . . . . . . . . . . . . . . . . . . 46 3.3.3 Raman coupling with ϕ = 0 . . . . . . . . . . . . . . . . . . . 48 3.3.4 Raman coupling with ϕ = π/2 . . . . . . . . . . . . . . . . . . 50 3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4 Electric Transport Property for Kane-Mele Model with A Spin-flip Impurity 56 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.2 Hamiltonian and boundary conditions . . . . . . . . . . . . . . . . . . 57 4.3 Spectra for edge states . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.4 Wavefunction for the Semi-infinite System . . . . . . . . . . . . . . . 67 4.4.1 Wavefunction for edge States . . . . . . . . . . . . . . . . . . 68 4.4.2 Wavefunction for Bulk States . . . . . . . . . . . . . . . . . . 69 4.5 Green function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.6 Transport properties with a single impurity . . . . . . . . . . . . . . . 74 4.7 Basis for constructing an effective model . . . . . . . . . . . . . . . . 77 4.8 Effective one dimensional model . . . . . . . . . . . . . . . . . . . . . 79 4.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5 Conclusions 85 6 Appendix-A 86 7 Appendix-B 93

    [1] S. Weinberg, The Quantum Theory of Fields I, Chap 2, Camberidge University
    Press, 2002..
    [2] J. Mulak, and Z. Gajek, The effective crystal field potential, Elsevier Science
    Ltd, Kidlington, Oxford, UK (2000).
    [3] G. W. Semenoff, Phys. Rev. Lett. 53, 2449 (1984).
    [4] C. A. Lamas, D. C. Cabra, and N. Grandi, Phys. Rev. B 80, 75108 (2009).
    [5] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
    [6] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
    [7] H. Zhang et al., Nat. Phys. 5, 438(2009).
    [8] Y.-J. Lin, K. Jim´enez-Garc´ıa and I. B. Spielman, Nature 471, 83 (2011).
    [9] V. Galitski and I. B. Spielman, Nat. 494, 49 (2013).
    [10] C. V. Parker, L.-C. Ha and C. Chin, Nat. Phys. 9, 769–774 (2013).
    [11] D. Xiao, M.-C. Chang and Q. Niu, Rev. Mod. Phys. 82, 1959 (2010).
    [12] J. Dalibard, F. Gerbier, G. Juzeli¯unas, and P. ¨Ohberg, Rev. Mod. Phys. 83,
    1523 (2011).
    [13] J. R. Rubbmark, M. M. Kash, M. G. Littman, and D. Kleppner, Phys. Rev. A
    23 (1981) 3107.
    [14] Y.-J. Lin, R. L. Compton, and K. Jimenez-Garcia, J. V. Porto and I. B. Spielman,
    Nature 462, 628 (2009).
    [15] J.-h. Zheng, B. Xiong, G. Juzelinas, and D.-W. Wang, Phys. Rev. A 92, 013604
    (2015).
    [16] J.-h. Zheng, D.-W. Wang, and G. Juzelinas, arXiv:1603.06698, submitted to
    Scientific Report.
    [17] G. Jotzu, et. al., Nature 515, 237 (2014).
    [18] J.-h. Zheng, X.-P. Wang, Y.-H. Ho, and M. A. Cazalilla, in preparation.
    [19] K. V. Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 (1980).
    [20] D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. Lett. 48, 1559 (1982).
    [21] R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).
    [22] D. R. Hofstadter, Phys. Rev. B 14, 2239 (1976).
    [23] N. Cooper, Advances in Physics 57, 539 (2008).
    [24] A. L. Fetter, Rev. Mod. Phys. 81, 647 (2009).
    [25] G. Juzeli¯unas, J. Ruseckas, P. ¨Ohberg, and M. Fleischhauer, Phys. Rev. A 73,
    025602 (2006).
    [26] N. Goldman, G. Juzeli¯unas, P. ¨Ohberg, and I. B. Spielman, Rep. Prog. Phys.
    77, 126401 (2014).
    [27] I. B. Spielman, Phys. Rev. A 79, 063613 (2009).
    [28] X.-J. Liu, M. F. Borunda, X. Liu and J. Sinova, Phys. Rev. Lett. 102 046402
    (2009).
    [29] M. Kiffner, W. Li, and D. Jaksch, Phys. Rev. Lett. 110, 170402 (2013).
    [30] M. Kiffner, W. Li, and D. Jaksch, Journal of Physics B: Atomic, Molecular and
    Optical Physics 46, 134008 (2013).
    [31] A. Cesa and J. Martin, Phys. Rev. A 88, 062703 (2013).
    [32] M. J. Edmonds, M. Valiente, G. Juzeli¯unas, L. Santos, and P. ¨Ohberg, Phys.
    Rev. Lett. 110, 085301 (2013).
    [33] M. Edmonds, M. Valiente, and P. ¨Ohberg, ARXIV: 1408.6886 (2014).
    [34] W. Kohn, Phys. Rev. 123, 1242 (1961);
    [35] S. K. Yip, Phys. Rev. B, 43, 1707 (1991)
    [36] H. Zhai, Int. J. Mod. Phys. B, 26,1230001 (2012) and its references.
    [37] S. Sinha, R. Nath, and L. Santos, Phys. Rev. Lett. 107, 270401 (2011).
    [38] T.-L. Ho, and S. Zhang, Phys. Rev. Lett. 107, 150403 (2011).
    [39] R. M. Wilson, B. M. Anderson, and C. W. Clark, Phys. Rev. Lett. 111, 185303
    (2013).
    [40] W. Zheng, Z.-Q. Yu, X. Cui and H. Zhai, J. Phys. B: At. Mol Opt.Phys 46,
    134007(2013); Q. Zhu, C. Zhang and B. Wu, EPL 100 50003 (2012); T. Ozawa,
    L. P. Pitaevskii, and S. Stringari Phys. Rev. A 87, 063610 (2013).
    [41] D. M. Stamper-Kurn and M. Ueda, Rev. Mod. Phys. 85, 1191 (2013).
    [42] P. O. Fedichev, Y. Kagan, G. V. Shlyapnikov, and J. T. M. Walraven, Phys.
    Rev. Lett. 77, 2913 (1996).
    [43] M. Theis, G. Thalhammer, K. Winkler, M. Hellwig, G. Ruff, R. Grimm, and
    J. H. Denschlag, Phys. Rev. Lett. 93, 123001 (2004).
    [44] K. Enomoto, K. Kasa, M. Kitagawa, and Y. Takahashi, Phys. Rev. Lett. 101,
    203201 (2008).
    [45] D. J. Papoular, G. V. Shlyapnikov, and J. Dalibard, Phys. Rev. A 81, 041603
    (2010).
    [46] C. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases, 2nd Edition
    (2008), Chap.7.
    [47] T. Ozawa and G. Baym Phys. Rev. A 85, 063623 (2012).
    [48] E. van der Bijl and R. A. Duine Phys. Rev. Lett. 107, 195302 (2011).
    [49] Y. Li, G. I. Martone, and S. Stringari EPL, 99,56008 (2012).
    [50] V. L. Ginzburg, Sov. Phys. JETP 4, 153 (1957).
    [51] N. F. Berk and J. R. Schrieffer, Phys. Rev. Lett. 17, 433 (1966).
    [52] N. D. Mathur, et al., Nature 394, 39 (1998).
    [53] S. S. Saxena, et al., Nature 406, 587 (2000).
    [54] P. Fulde and R. A. Ferrell, Phys. Rev. 135, A550 (1964).
    [55] A. Larkin and Y. Ovchinnikov, Sov. Phys. JETP 20, 762 (1965).
    [56] J. E. Baarsma and H. T. C. Stoof, Phys. Rev. A 87, 063612 (2013).
    [57] Y. Matsuda and H. Shimahara, Journal of the Physical Society of Japan 76,
    051005 (2007).
    [58] H. Shimahara: in A. Lebed, ed., The Physics of Organic Superconductors and
    Conductors volume 110 of Springer Series in Materials Science 687–704 Springer
    Berlin Heidelberg (2008).
    [59] M. Kenzelmann, et al., Science 321, 1652 (2008).
    [60] A. Bianchi, et al., Phys. Rev. Lett. 91, 187004 (2003).
    [61] Y. Matsuda, and H. Shimahara, J. Phys. Soc. Jpn. 76, 051005 (2007).
    [62] R. Beyer and J. Wosnitza, Low Temp. Phys. 39, 225 (2013).
    [63] M. W. Zwierlein, A. Schirotzek, C. H. Schunck, and W. Ketterle, Science 311,
    492 (2006).
    [64] G. B. Partridge, et al., Science 311, 503 (2006).
    [65] M. Taglieber, et al., Phys. Rev. Lett. 100, 010401 (2008).
    [66] D. Aoki, et al., Nature 413, 613 (2001).
    [67] C. Pfleiderer, et al., Nature 412, 58 (2001).
    [68] N. T. Huy, et al., Phys. Rev. Lett. 99, 067006 (2007).
    [69] K. Machida and T. Ohmi, Phys. Rev. Lett. 86, 850 (2001).
    [70] K. V. Samokhin and M. B. Walker, Phys. Rev. B 66, 174501 (2002).
    [71] A. H. Nevidomskyy, Phys. Rev. Lett. 94, 097003 (2005).
    [72] J. Linder and A. Sudbø, Phys. Rev. B 76, 054511 (2007).
    [73] J.M. Tranquada, P.M. Gehring, G. Shirane, S. Shamoto and M. Sato, Phys.
    Rev. B 46, 5561 (1992).
    [74] I. H. Deutsch, and P. S. Jessen, Phys. Rev. A 57, 1972 (1998).
    [75] N. Goldman, G. Juzeli¯unas, P. ¨Ohberg and I. B. Spielman, Rep. Progr. Phys.
    77, 126401 (2014).
    [76] D. L. Campbell and G. Juzeli¯unas, and I. B. Spielman, Phys. Rev. A 84, 025602
    (2011).
    [77] G. Chen and M. Gong and C. Zhang, Phys. Rev. A 85, 013601 (2011).
    [78] M. Randeria, J.-M. Duan, and L.-Y. Shieh, Phys. Rev. Lett. 62, 981 (1989).
    [79] M. Randeria, J.-M. Duan, and L.-Y. Shieh, Phys. Rev. B 41, 327 (1990).
    [80] V. M. Loktev, R. M. Quick, and S. G. Sharapov, Physics Reports 349, 1 (2001).
    [81] Y. Yanase, Journal of the Physical Society of Japan 77, 063705 (2008).
    [82] Z. Zheng, et al., Scientific Reports 4, 6535 (2014).
    [83] S. H. Liu and R. A. Klemm, Phys. Rev. B 48, 10650(R) (1993).
    [84] M. Biagini, Phys. Rev. B 53, 9359 (1996).
    [85] M. Tachiki, S. Takahashi, and F. Steglich, H. Adrian, Z. Phys. B -Condensed
    Matter 80, 161 (1990).
    [86] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).
    [87] L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98, 106803 (2007).
    [88] L. Fu and C. L. Kane, Phys. Rev. B 76, 045302 (2007).
    [89] J. E. Moore and L. Balents, Phys. Rev. B 75, 121306 (2007).
    [90] R. Roy, Phys. Rev. B 79, 195322 (2009).
    [91] J. E. Moore, Nature (London) 464, 194 (2010).
    [92] Z.-C. Gu and X.-G. Wen, Phys. Rev. B 80, 155131 (2009).
    [93] F. Pollmann, E. Berg, A. M. Turner, and M. Oshikawa, Phys. Rev. B 85, 075125
    (2012).
    [94] X. Chen, Z.-C. Gu, and X.-G. Wen, Phys. Rev. B 83, 035107 (2011).
    [95] X.e Chen, Z.-X. Liu, and X.-G. Wen, Phys. Rev. B 84, 235141 (2011).
    [96] L. Barreto, et al., Nano Lett., 14(7), 3755-3760 (2014).
    [97] S. Bhattacharyya, et al., ACS Nano, 9(12),12529-12536 (2015).
    [98] C. Durand, et al., Nano Lett., 16(4), 2213-2220 (2016).
    [99] J. Kim, et al., ACS Nano, 10(4), 3936-3943 (2016).
    [100] C. L. Kane and M. P. A. Fisher, Phys. Rev. Lett. 68, 1220 (1992).
    [101] C. L. Kane and M. P. A. Fisher, Phys. Rev. B 46, 15233 (1992).
    [102] D. Yue, L. I. Glazman and K. A. Matveev, Phys. Rev. B 49, 1966 (1994).
    [103] A. Imambekov, T. L. Schmidt, and L. I. Glazman, Rev. Mod. Phys. 84, 1253
    (2012).
    [104] F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).
    [105] H. Doh, G. S. Jeon, and H. J. Choi, ArXiv: 1408.4507 (2014).
    [106] B. Zhou, et al., Phys. Rev. Lett. 101, 246807 (2008).
    [107] G. Zhang, et al., Nanoscale, 6, 3259 (2014).
    [108] A. D. Caviglia, et al. Phys. Rev. Lett. 104, 126803 (2010).
    [109] M. Ben Shalom, M. Sachs, D. Rakhmilevitch, A. Palevski and Y. Dagan, Phys.
    Rev. Lett. 104, 126802 (2010).
    [110] D. A. Dikin, et al., Phys. Rev. Lett. 107, 056802 (2011).
    [111] K. Michaeli, A. C. Potter, and P. A. Lee, Phys. Rev. Lett. 108, 117003 (2012).
    [112] C. Zhang, S.Tewari, R. M. Lutchyn, and S. Das Sarma, Phys. Rev. Lett. 101,
    160401 (2008).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE