研究生: |
鄭俊輝 Zheng,Jun-Hui |
---|---|
論文名稱: |
冷原子中的合成規範場及自旋軌道耦合 Synthetic Gauge Field and Spin-orbit Coupling in Cold Atoms |
指導教授: |
王道維
Wang, Daw-Wei |
口試委員: |
郭西川
Gou, Shih-Chuan 米格爾 Cazalilla, Miguel 牟中瑜 Mou, Chung-Yu 陳柏中 Chen, Po-Chung 郭光宇 Guo, Guang-Yu |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 102 |
中文關鍵詞: | 冷原子 、合成規範場 、自旋軌道耦合 、拓撲絕緣體 |
外文關鍵詞: | Cold atoms, Synthetic gauge field, Spin-orbit coupling, Topological insulator |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文,我將討論不同系統中自旋軌道耦合的效應:旋量玻色-愛因斯坦凝聚系統,雙層費米系統,以及二維拓撲絕緣體系統。在旋量玻色-愛因斯坦凝聚系統中,我將主要討論自旋軌道耦合和兩體相互作用的混合效應。運用絕熱近似,我系統的研究了在合成規範場中旋量玻色-愛因斯坦凝聚的基態,激發態以及相關的效應。在雙層費米系統中,我主要考慮自旋-層耦合及超流的效應。通過映射到有效模型,我證明了在零溫下,加入層之間帶有自旋翻轉的隧穿項,可以大大提高超導配對的臨界磁場。在二維拓撲絕緣體中,我主要研究Kane-Mele模型,并考慮在鋸齒形邊界上單顆磁性雜質的效應。我得到Kane-Mele模型譜以及波函數的解析解并討論了它的電輸運性質。進一步構造了一維有效模型來描述該系統。
In this thesis, I will discuss the effect of spin-orbit coupling in different systems: spinor Bose-Einstein Condensate (BEC) system, bilayer Fermionic system, and 2D topological insulator. In the spinor BEC system, I focus on the hybrid effect of spin-orbit coupling and two-body interaction. By using adiabatic approximation, I systematically investigate the ground state, elementary excitations and related effects of a BEC within a
synthetic vector potential. In the bilayer Fermionic system, I consider the effect of spin-layer
coupling and superfluidity. By mapping to an effective model, I demonstrate that at zero temperature
the critical value of the magnetic field for pairing can be significantly increased by including a spin-flip tunnelling between layers. In the 2D topological insulator, I focus on the Kane-Mele (KM) Hubbard model and consider the effect of a single spin-flip impurity at the Zigzag edge. I analytically obtain the spectra and wavefunction of the KM model and then discuss its electronic transport property. Furthermore, I develop a low energy effective 1D model to describe the system.
[1] S. Weinberg, The Quantum Theory of Fields I, Chap 2, Camberidge University
Press, 2002..
[2] J. Mulak, and Z. Gajek, The effective crystal field potential, Elsevier Science
Ltd, Kidlington, Oxford, UK (2000).
[3] G. W. Semenoff, Phys. Rev. Lett. 53, 2449 (1984).
[4] C. A. Lamas, D. C. Cabra, and N. Grandi, Phys. Rev. B 80, 75108 (2009).
[5] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
[6] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
[7] H. Zhang et al., Nat. Phys. 5, 438(2009).
[8] Y.-J. Lin, K. Jim´enez-Garc´ıa and I. B. Spielman, Nature 471, 83 (2011).
[9] V. Galitski and I. B. Spielman, Nat. 494, 49 (2013).
[10] C. V. Parker, L.-C. Ha and C. Chin, Nat. Phys. 9, 769–774 (2013).
[11] D. Xiao, M.-C. Chang and Q. Niu, Rev. Mod. Phys. 82, 1959 (2010).
[12] J. Dalibard, F. Gerbier, G. Juzeli¯unas, and P. ¨Ohberg, Rev. Mod. Phys. 83,
1523 (2011).
[13] J. R. Rubbmark, M. M. Kash, M. G. Littman, and D. Kleppner, Phys. Rev. A
23 (1981) 3107.
[14] Y.-J. Lin, R. L. Compton, and K. Jimenez-Garcia, J. V. Porto and I. B. Spielman,
Nature 462, 628 (2009).
[15] J.-h. Zheng, B. Xiong, G. Juzelinas, and D.-W. Wang, Phys. Rev. A 92, 013604
(2015).
[16] J.-h. Zheng, D.-W. Wang, and G. Juzelinas, arXiv:1603.06698, submitted to
Scientific Report.
[17] G. Jotzu, et. al., Nature 515, 237 (2014).
[18] J.-h. Zheng, X.-P. Wang, Y.-H. Ho, and M. A. Cazalilla, in preparation.
[19] K. V. Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 (1980).
[20] D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. Lett. 48, 1559 (1982).
[21] R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).
[22] D. R. Hofstadter, Phys. Rev. B 14, 2239 (1976).
[23] N. Cooper, Advances in Physics 57, 539 (2008).
[24] A. L. Fetter, Rev. Mod. Phys. 81, 647 (2009).
[25] G. Juzeli¯unas, J. Ruseckas, P. ¨Ohberg, and M. Fleischhauer, Phys. Rev. A 73,
025602 (2006).
[26] N. Goldman, G. Juzeli¯unas, P. ¨Ohberg, and I. B. Spielman, Rep. Prog. Phys.
77, 126401 (2014).
[27] I. B. Spielman, Phys. Rev. A 79, 063613 (2009).
[28] X.-J. Liu, M. F. Borunda, X. Liu and J. Sinova, Phys. Rev. Lett. 102 046402
(2009).
[29] M. Kiffner, W. Li, and D. Jaksch, Phys. Rev. Lett. 110, 170402 (2013).
[30] M. Kiffner, W. Li, and D. Jaksch, Journal of Physics B: Atomic, Molecular and
Optical Physics 46, 134008 (2013).
[31] A. Cesa and J. Martin, Phys. Rev. A 88, 062703 (2013).
[32] M. J. Edmonds, M. Valiente, G. Juzeli¯unas, L. Santos, and P. ¨Ohberg, Phys.
Rev. Lett. 110, 085301 (2013).
[33] M. Edmonds, M. Valiente, and P. ¨Ohberg, ARXIV: 1408.6886 (2014).
[34] W. Kohn, Phys. Rev. 123, 1242 (1961);
[35] S. K. Yip, Phys. Rev. B, 43, 1707 (1991)
[36] H. Zhai, Int. J. Mod. Phys. B, 26,1230001 (2012) and its references.
[37] S. Sinha, R. Nath, and L. Santos, Phys. Rev. Lett. 107, 270401 (2011).
[38] T.-L. Ho, and S. Zhang, Phys. Rev. Lett. 107, 150403 (2011).
[39] R. M. Wilson, B. M. Anderson, and C. W. Clark, Phys. Rev. Lett. 111, 185303
(2013).
[40] W. Zheng, Z.-Q. Yu, X. Cui and H. Zhai, J. Phys. B: At. Mol Opt.Phys 46,
134007(2013); Q. Zhu, C. Zhang and B. Wu, EPL 100 50003 (2012); T. Ozawa,
L. P. Pitaevskii, and S. Stringari Phys. Rev. A 87, 063610 (2013).
[41] D. M. Stamper-Kurn and M. Ueda, Rev. Mod. Phys. 85, 1191 (2013).
[42] P. O. Fedichev, Y. Kagan, G. V. Shlyapnikov, and J. T. M. Walraven, Phys.
Rev. Lett. 77, 2913 (1996).
[43] M. Theis, G. Thalhammer, K. Winkler, M. Hellwig, G. Ruff, R. Grimm, and
J. H. Denschlag, Phys. Rev. Lett. 93, 123001 (2004).
[44] K. Enomoto, K. Kasa, M. Kitagawa, and Y. Takahashi, Phys. Rev. Lett. 101,
203201 (2008).
[45] D. J. Papoular, G. V. Shlyapnikov, and J. Dalibard, Phys. Rev. A 81, 041603
(2010).
[46] C. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases, 2nd Edition
(2008), Chap.7.
[47] T. Ozawa and G. Baym Phys. Rev. A 85, 063623 (2012).
[48] E. van der Bijl and R. A. Duine Phys. Rev. Lett. 107, 195302 (2011).
[49] Y. Li, G. I. Martone, and S. Stringari EPL, 99,56008 (2012).
[50] V. L. Ginzburg, Sov. Phys. JETP 4, 153 (1957).
[51] N. F. Berk and J. R. Schrieffer, Phys. Rev. Lett. 17, 433 (1966).
[52] N. D. Mathur, et al., Nature 394, 39 (1998).
[53] S. S. Saxena, et al., Nature 406, 587 (2000).
[54] P. Fulde and R. A. Ferrell, Phys. Rev. 135, A550 (1964).
[55] A. Larkin and Y. Ovchinnikov, Sov. Phys. JETP 20, 762 (1965).
[56] J. E. Baarsma and H. T. C. Stoof, Phys. Rev. A 87, 063612 (2013).
[57] Y. Matsuda and H. Shimahara, Journal of the Physical Society of Japan 76,
051005 (2007).
[58] H. Shimahara: in A. Lebed, ed., The Physics of Organic Superconductors and
Conductors volume 110 of Springer Series in Materials Science 687–704 Springer
Berlin Heidelberg (2008).
[59] M. Kenzelmann, et al., Science 321, 1652 (2008).
[60] A. Bianchi, et al., Phys. Rev. Lett. 91, 187004 (2003).
[61] Y. Matsuda, and H. Shimahara, J. Phys. Soc. Jpn. 76, 051005 (2007).
[62] R. Beyer and J. Wosnitza, Low Temp. Phys. 39, 225 (2013).
[63] M. W. Zwierlein, A. Schirotzek, C. H. Schunck, and W. Ketterle, Science 311,
492 (2006).
[64] G. B. Partridge, et al., Science 311, 503 (2006).
[65] M. Taglieber, et al., Phys. Rev. Lett. 100, 010401 (2008).
[66] D. Aoki, et al., Nature 413, 613 (2001).
[67] C. Pfleiderer, et al., Nature 412, 58 (2001).
[68] N. T. Huy, et al., Phys. Rev. Lett. 99, 067006 (2007).
[69] K. Machida and T. Ohmi, Phys. Rev. Lett. 86, 850 (2001).
[70] K. V. Samokhin and M. B. Walker, Phys. Rev. B 66, 174501 (2002).
[71] A. H. Nevidomskyy, Phys. Rev. Lett. 94, 097003 (2005).
[72] J. Linder and A. Sudbø, Phys. Rev. B 76, 054511 (2007).
[73] J.M. Tranquada, P.M. Gehring, G. Shirane, S. Shamoto and M. Sato, Phys.
Rev. B 46, 5561 (1992).
[74] I. H. Deutsch, and P. S. Jessen, Phys. Rev. A 57, 1972 (1998).
[75] N. Goldman, G. Juzeli¯unas, P. ¨Ohberg and I. B. Spielman, Rep. Progr. Phys.
77, 126401 (2014).
[76] D. L. Campbell and G. Juzeli¯unas, and I. B. Spielman, Phys. Rev. A 84, 025602
(2011).
[77] G. Chen and M. Gong and C. Zhang, Phys. Rev. A 85, 013601 (2011).
[78] M. Randeria, J.-M. Duan, and L.-Y. Shieh, Phys. Rev. Lett. 62, 981 (1989).
[79] M. Randeria, J.-M. Duan, and L.-Y. Shieh, Phys. Rev. B 41, 327 (1990).
[80] V. M. Loktev, R. M. Quick, and S. G. Sharapov, Physics Reports 349, 1 (2001).
[81] Y. Yanase, Journal of the Physical Society of Japan 77, 063705 (2008).
[82] Z. Zheng, et al., Scientific Reports 4, 6535 (2014).
[83] S. H. Liu and R. A. Klemm, Phys. Rev. B 48, 10650(R) (1993).
[84] M. Biagini, Phys. Rev. B 53, 9359 (1996).
[85] M. Tachiki, S. Takahashi, and F. Steglich, H. Adrian, Z. Phys. B -Condensed
Matter 80, 161 (1990).
[86] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).
[87] L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98, 106803 (2007).
[88] L. Fu and C. L. Kane, Phys. Rev. B 76, 045302 (2007).
[89] J. E. Moore and L. Balents, Phys. Rev. B 75, 121306 (2007).
[90] R. Roy, Phys. Rev. B 79, 195322 (2009).
[91] J. E. Moore, Nature (London) 464, 194 (2010).
[92] Z.-C. Gu and X.-G. Wen, Phys. Rev. B 80, 155131 (2009).
[93] F. Pollmann, E. Berg, A. M. Turner, and M. Oshikawa, Phys. Rev. B 85, 075125
(2012).
[94] X. Chen, Z.-C. Gu, and X.-G. Wen, Phys. Rev. B 83, 035107 (2011).
[95] X.e Chen, Z.-X. Liu, and X.-G. Wen, Phys. Rev. B 84, 235141 (2011).
[96] L. Barreto, et al., Nano Lett., 14(7), 3755-3760 (2014).
[97] S. Bhattacharyya, et al., ACS Nano, 9(12),12529-12536 (2015).
[98] C. Durand, et al., Nano Lett., 16(4), 2213-2220 (2016).
[99] J. Kim, et al., ACS Nano, 10(4), 3936-3943 (2016).
[100] C. L. Kane and M. P. A. Fisher, Phys. Rev. Lett. 68, 1220 (1992).
[101] C. L. Kane and M. P. A. Fisher, Phys. Rev. B 46, 15233 (1992).
[102] D. Yue, L. I. Glazman and K. A. Matveev, Phys. Rev. B 49, 1966 (1994).
[103] A. Imambekov, T. L. Schmidt, and L. I. Glazman, Rev. Mod. Phys. 84, 1253
(2012).
[104] F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).
[105] H. Doh, G. S. Jeon, and H. J. Choi, ArXiv: 1408.4507 (2014).
[106] B. Zhou, et al., Phys. Rev. Lett. 101, 246807 (2008).
[107] G. Zhang, et al., Nanoscale, 6, 3259 (2014).
[108] A. D. Caviglia, et al. Phys. Rev. Lett. 104, 126803 (2010).
[109] M. Ben Shalom, M. Sachs, D. Rakhmilevitch, A. Palevski and Y. Dagan, Phys.
Rev. Lett. 104, 126802 (2010).
[110] D. A. Dikin, et al., Phys. Rev. Lett. 107, 056802 (2011).
[111] K. Michaeli, A. C. Potter, and P. A. Lee, Phys. Rev. Lett. 108, 117003 (2012).
[112] C. Zhang, S.Tewari, R. M. Lutchyn, and S. Das Sarma, Phys. Rev. Lett. 101,
160401 (2008).