簡易檢索 / 詳目顯示

研究生: 林子鈞
Tzu-Chun Lin
論文名稱: 鍍著於304不鏽鋼基材之氮氧化鋯薄膜相變化、機械性質與潤濕性研究
Phase Transition, Mechanical Properties and Wettability of Zr(N,O) thin films on AISI 304 stainless steel substrate
指導教授: 黃嘉宏
Jia-Hong Huang
喻冀平
Ge-Ping Yu
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 101
中文關鍵詞: 氮氧化鋯相變化潤濕性
外文關鍵詞: Zirconium Oxynitride, phase transition, wettabiility
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Nanocrystalline Zr(N,O) thin films were deposited on 304 stainless steel substrates using unbalanced magnetron sputtering (UBMS) system. The purpose of this study was to investigate the effect of oxygen flow rate (ranging from 0 to 2 sccm) on the composition, structure and properties of Zr(N,O) thin films. The oxygen contents of the thin films determined using X-ray Photoelectron Spectroscopy (XPS) increased significantly with increasing oxygen flow rate. From the observation of X-ray Diffraction (XRD), the dominant phases in the films were in a sequence of ZrN, c-Zr2ON2, and m-ZrO2 with increasing oxygen flow rate. The characteristics of the films can be divided into three zones: Zone I (ZrN), Zone II (Zr2ON2) and Zone III (m-ZrO2). Modified XRD sin2ψ method was used to respectively measure the residual stresses of ZrN, Zr2ON2 and m-ZrO2 phases. The residual stress in ZrN was relieved as the oxygen content increased. Zr2ON2 and m-ZrO2 were found to be low residual stress phases. The hardness of the Zr(N,O) films decreased with increasing the oxygen content due to the formation of the soft oxide phase. AES analysis show ed that there existed a ZrO2 interlayer between the Zr(N,O) film and the substrates for those samples deposited using O2/N2 mixing gas. Contact angle was used as an index to assess the wettability of the film on substrate. The contact angle was calculated from the measured surface energies of the related materials. The result of the contact angles revealed the lowest wettability between ZrO2 and SS304. This results showed well-correlated to those of the salt spray tests, indicating that the ZrO2 interlayer may account for the spallation of the Zr(N,O) films after salt spray tests.


    本實驗使用非平衡磁控濺鍍系統,於304不鏽鋼基材製備奈米晶氮氧化鋯薄膜。在本研究中,將探討氧氣流量(自0到2 sccm)對氮氧化鋯薄膜的成分、結構以及性質之影響。藉由X光光電子能譜儀量測到氮氧化鋯薄膜的氧含量,隨著氧氣流量增加而明顯增加。從x光繞射圖的觀察中則發現,伴隨著氧含量的增加,薄膜的主要相出現之順序為:面心立方晶之氮化鋯(ZrN),立方晶之氮氧化鋯(Zr2ON2),最後是單斜晶之二氧化鋯(ZrO2),由這些薄膜的特徵可以將試片分為三區,各區分別以氮化鋯(Zone I)、氮氧化鋯(Zone II)、及二氧化鋯 (Zone III)為主相。使用改良式X光繞射之sin2ψ的方法來量測氮化鋯、氮氧化鋯及二氧化鋯個別相的殘餘應力,氮化鋯的殘餘應力隨著氧含量上升而得到釋放,而氮氧化鋯及二氧化鋯則為低應力相。氮氧化鋯薄膜之硬度因為隨著氧含量增加形成較軟的氧化相而下降。在歐傑電子能譜儀(AES)的分析中,發現所有通氧的試片存在著一層氧化鋯介層。本研究中,使用兩種材料間的接觸角來作為材料間可濕性的指標,接觸角是由材料的表面能計算所得,使用接觸角的方法發現,二氧化鋯在304不鏽鋼的附著性不佳,此結果說明鹽霧試驗之後,氮氧化鋯薄膜從基板上碎裂可能是由於二氧化鋯介層的影響。

    謝誌 i 摘要 iii Abstract iv Contents v List of Figures vii List of Tables ix Chapter 1 Introduction 1 Chapter 2 Literature Review 3 2.1 Characteristics of Zr(N,O) Thin Films 3 2.1.1 Zirconium Dioxides 3 2.1.2 Zirconium Oxynitrides 4 2.2 Deposition Method (UBMS) 10 2.3 Effects of Oxygen Flow Rate on the Structure and Properties of TMe(N,O) films 10 2.3.1 Residual Stress 11 2.3.2 Hardness 11 2.3.3 Corrosion 12 2.4 Theoretical Basis of the Contact Angle and Surface Energy 12 Chapter 3 Experimental Details 16 3.1 Specimen Preparation and Deposition Process 16 3.2 Characterization Methods 20 3.2.1 X-ray Photoelectron Spectroscopy (XPS) 20 3.2.2 XRD and GIXRD 20 3.2.3 Rutherford Backscattering Spectroscopy (RBS) 22 3.2.4 Auger Electron Spectroscopy (AES) 23 3.2.5 Combination of RBS and AES 23 3.3 Properties Measurements 24 3.3.1 Hardness and Roughness 24 3.3.2 Residual Stress 24 3.3.3 Contact Angle and Surface Energy 25 3.3.4 Coloration 29 3.3.5 Corrosion Resistance 31 Chapter 4 Results 33 4.1 Compositions 33 4.1.1 XPS 33 4.1.2 RBS 34 4.1.3 AES 34 4.2 Structure 46 4.2.1 θ/ 2θ XRD 46 4.2.2 Phase ratios 47 4.2.3 GIXRD 47 4.3 Properties 54 4.3.1 Hardness 54 4.3.2 Residual stress 56 4.3.3 Roughness 60 4.3.4 Packing Density 60 4.3.5 Contact Angle and Surface Energy 60 4.3.6 Optical Properties 64 4.3.6.1 Reflectance 64 4.3.6.2 Coloration 64 4.3.7 Corrosion resistance 69 Chapter 5 Discussion 70 5.1 Phase Transformation and Phase Separation 70 5.1.1 Zone I - ZrN 71 5.1.2 Zone II- Zr2ON2 + a-ZrO2: 72 5.1.3 Zone III- m-ZrO2: 73 5.2 Properties Related to Phase Transformation 76 5.2.1 Residual Stress 76 5.2.2 Hardness 77 5.3 The formation of the Oxide Phase Interlayer 78 5.4 Wettability 81 Chapter 6 Conclusions 82 References 83 Appendix A 90 Appendix B 96

    1 F. Vaz, P. Cerqueira, L. Rebouta, S.M.C. Nascimento, E. Alves, Ph. Goudeau, J.P. Riviere, K. Psichow, J. de Rijk, Thin Solid Films 447 (2004) 449.
    2 L. V. Leaven, M. N. Alias, R. Brown, Surf. Coat. Technol. 53 (1992) 25.
    3 P. Panjan, B. Navinsek, A. Zabkar, Dj. Mandrino, J. Fiser, Thin Solid Films 228 (1993) 233.
    4 E. Budke, J. Krempel-Hesse, H. Maidhof, H. Schüssler, Surf. Coat.Technol. 112 (1999) 108
    5 F. Vaz, P. Carvalho, L. Cunha, L. Rebouta, C. Moura, E. Alves, A.R. Ramos, A. Cavaleiro, Ph. Goudeau, J. P. Riviere, Thin Solid Films, 469 (2004) 11.
    6 E. Ariza, L.A. Rocha, F. Vaz, L. Cunha, S.C. Ferreira, P. Carvalho, L. Rebouta, E. Alves, P. Goudeau, J.P. Riviere, Thin Solid Films 469(2004) 274.
    7 S.C. Ferreira, E. Ariza, L.A. Rocha, J.R. Gomes, P. Carvalho, F. Vaz, A.C. Fernandes, L. Rebouta, L. Cunha, E. Alves, P. Goudeau, J.P. Riviere, Surf. Coat. Technol., 200 (2006) 6634.
    8 P. Carvalho, F. Vaz, L. Rebouta, L. Cunha, C.J. Tavares, C. Moura, E. Alves, A. Cavaleiro, P. Goudeau, E. Le Bourhis, J.P. Riviere, J.F. Pierson, O. Banakh, J. Appl. Phys. 98 (2005) 023715.
    9 Y. Makino, T. Tanaka, M. Nose, M. Misawa, A. Tanimoto, T. Nakai, K. Kato, K. Nogi, Surf. Coat. Technol. 98 (1998) 934.
    10 S. Venkataraj, D. Severin, S.H. Mohamed, J. Ngaruiya, O. Kappertz, M. Wuttig, Thin Solid Films, 502 (2006) 228.
    11 S.H. Mohamed, O. Kappertz, J.M. Ngaruiya, T. Niemeier, R. Drese, R. Detemple, M.M. Wakkad, M. Wuttig, Phys. Status Solidi., A Appl. Res., 201 (2004) 90.
    12 S. Venkataraj, O. Kappertz, R. Jayavel, M. Wuttig, J. Appl. Phys., 92 (2002) 2461.
    13 J.M. Chappe, N. Martin, G. Terwagne, J. Lintymer, J. Gavoille, J. Takadoum, Thin Solid Films, 440 (2003) 66.
    14 J.H. Huang, K.H. Chang, G.P. Yu, Surf. Coat. Technol., 201 (2007) 6404.
    15 Z.E. Tsai, Effect of Oxygen Flow Rate on the Structure and Properties of Nanocrystalline Zr(N,O) Thin Film, Master Thesis, National Tsing Hua University, Taiwan, R.O.C., 2005.
    16 K.C. Lan, Study of Nano-crystalline Zr(N,O) Thin Films on Si Substrate by Ion-Plating, Master Thesis, National Tsing Hua University, Taiwan, R.O.C., 2007.
    17 C.W. Chen, The Structure and Properties of Nano-crystalline Zr(N,O) Thin Films on AISI 304 Stainless Steel: Effect of Film Thickness, Master Thesis, National Tsing Hua University, Taiwan, R.O.C.,2007
    18 T.H. Wu, Heat Treatment Induced Phase Separation and Phase Transformation of Zr(N,O) Thin Films Deposited by Ion-Plating, Master Thesis, National Tsing Hua University, Taiwan, R.O.C., 2007.
    19 Y. Y. Hu, Phase Transition and Related Properties of Nanocrystalline Zr(N,O) Thin Films by Unbalanced Magnetron Sputtering, Master Thesis, National Tsing Hau University, Taiwan, R.O.C., 2007.
    20 C. Bartuli, L. Bertamini, S. Matera, S. Sturlese, Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing 199/2 (1995) 229.
    21 C.G. Levi, Current Opinion in Solid State & Materials Science 8/1 (2004) 77.
    22 V.S. Stubican, J. R. Hellman, Advances in Ceramics in: A.H. Heuer, L.W. Hobbs (Eds) Science and Technology of Zirconia, Vol. 3, American Ceramic Society, Columbus Ohio, 1981, pp.25-36.
    23 D.L. Porter, A.H. Heuer, J. Am. Ceram. Soc., 62 (1979) 298.
    24 A. H. Heuer, M. Ruhle, “Phase Transformation in ZrO2 –Containing Ceramics: I, The Instability of c-ZrO2 and the Resulting Diffusion-Controlled Reactions”, 1984, The American Ceramic Society.
    25 F.C. Nonamaker, Chem. Met. Eng., 31 (1924) 151-5.
    26 H. Bach, N. Neuroth, The Properties of Optical Glass, Springer, Heidelberg, 1995.
    27 C. Chaneliere, J.L. Autran, R.A.B. Devine, B. Balland, Mater. Sci. Eng., R 22 (1998) 269.
    28 G.D. Wilk, R.M. Wallace, J.M. Anthony, J. Appl. Phys., 87 (2000) 484.
    29 J.C. Gilles, Bull. Soc. Chim. Fr., 22 (1962) 2118.
    30 R. Collongues, J.C. Gilles, A.M. Lejus, M. Perez, Y. Jorba, D. Michel, Mater. Res. Bull., 2 (1967) 837.
    31 Y.B. Cheng, D.P. Thompson, J. Am. Ceram. Soc., 74 (1991) 1135.
    32 Y.B. Cheng, D.P. Thompson, J. Am. Ceram. Soc., 76 (1993) 683.
    33 M. Lerch, E. Fueglein, J. Wrba, Z. Anorg., Allg. Chem., 622 (1996) 367.
    34 W.H. Baur, M. Lerch, Z. Anorg. Allg. Chem., 622 (1996) 1729.
    35 M. Lerch, J. Am. Ceram. Soc., 79 (1996) 2641.
    36 M. Lerch, F. Krumeich, R. Hock, Solid State Ionics, 95 (1997) 87.
    37 M. Lerch, O. Rahauser, J. Mater. Sci., 32 (1997) 1357.
    38 M. Lerch, J. Mater. Sci. Lett., 17 (1998) 441.
    39 A.T. Tham, C. Rodel, M. Lerch, D. Wang, D.S. Su, A. Klein-Hoffmann, R. Schlogl, Cryst. Res. Technol., 39 (2004) 421.
    40 S. Ikeda, T. Yagi, N. Ishizawa, N. Mizutani, M. Kato, J. Sol. Sta. Chem, 73 (1988) 52.
    41 D.I. Bazhanov, A.A. Knizhnik, A.A. Safonov, A.A. Bagatur’yants, M.W. Stoker, A.A. Korkin, J. Appl. Phys., 97 (2005) 044108.
    42 D.P. Thompson, Proc. 2nd ECRS Conf., Augsburg, 1991, pp.35.
    43 T. Mishima, M. Matsuda, M. Miyake, Appl. Catal. A: General, 324 (2007) 77.
    44 JCPDS file 35-0753
    45 D. Pilloud, A. S. Dehlinger, J. F. Pierson, A. Roman, L. Pichon, Surf. Coat. Technol. 174-175 (2003) 338
    46 J.E. Hove, and W.C. Riley (Eds.), Modern Ceramic: Some Principles and Concepts, John Wiley, CA, 1965, p.352
    47 L.E. Toth, "Transition Metal Carbides and Nitrides", Academic press, New York, 1971, p.188
    48 A. J. Perry, Vficlav Valvoda and David Rafaja, Thin Solid Films, 214 (1992) 169
    49 E. Törok, A.J. Perry, L. Chollet, W.D. Sproul, Thin Solid Films, 153 (1987) 37
    50 A. J. Perry, Thin Solid Films, 193 (1990) 463
    51 C.C. Wang, S.A. Akbar, W. Chen, V.D. Patton, J. Mater. Sci. 30 (1995) 1627
    52 P. Jin, S. Maruno, Jpn. J. Appl. Phys., 30 (7) (1991) 1463
    53 Z.W. Zhao, B.K. Tay, G.Q. Yu, S.P. Lau, J. Phys.: Condens. Matter, 15 (2003) 7707.
    54 S. Venkataraj, O. Kappertz, C. Liesch, R. Detemple, R. Jayavel, M. Wutting, Vacuum, 75 (2004) 7
    55 JCPDS file 83-0944.
    56 W.A. Roth, B. Becher, Z. Physik. Chem., 145 A (1929) 461.
    57 K. Maca, H. Hadraba, J. Cihlar, Ceram. Int., 30 (2004) 843.
    58 B. Hatton, P.S. Nicholson, J. Am. Ceram. Soc., 84 (2001) 571.
    59 James F. Shackelford, CRC Materials Science and Engineering Handbook, 2nd ed., CRC Press, 1994.
    60 Oswald Kubaschewski, C.B. Alcock, Zirconium: Physico-chemical Properties of Its Compounds and Alloys, International Atomic Energy Agency, 1976.
    61 A. Hidaka, J. Nakamura, J. Sugimoto, Nuclear Engrg. and Design, 168 (1997) 361.
    62 F. Cernuschi, S. Ahmaniemi, P. Vuoristo, T. Mantyla, J. Eur. Ceram. Soc., 24 (2004) 2657.
    63 X.J. Chen, K.A. Khor, S.H. Chan, L.G. Yu, Mater. Sci. Eng., 335 (2002) 246.
    64 B. Karlik, E.K. Chang, S.G. Louie, Phys. Rev. B, 57 (1998) 7027.
    65 C.S. Hwang, H.J. Kim, J. Mater. Res., 8 (1993) 6.
    66 J.P. Abriata, R. Versaci, J. Garces, Bull. Alloy Phase Diagrams, 7 (1986) 116. J.P. Abriata, R. Versaci, J. Garces, Bull. Alloy Phase Diagrams, 7 (1986) 116
    67 S.J. Clarke, C.W. Michie, M.J. Rosseinsky, J. Solid State Chem., 146 (1999) 399.
    68 R.B. Von dreele, L. Eyring, A.L. Bowman, J.L. Yarnell, Acta. Cryst., B 31 (1975) 971.
    69 M.R. Thornber, D.J.M. Bevan, J. Graham, Acta. Cryst., B 24 (1968) 1183.
    70 S.M. Rossnagel, Sputter Deposition, Opportunities for Innovation, in: W.D. Sproul, L.O. Legg (Eds.), Advanced Surface Engineering, Techonic Publishing Co., Switzerland, 1995.
    71 B. Windows, N. Savvides, J. Vac. Sci. Technol., A 4 (1986) 196.
    72 D.G. Teer, Trans. Nonferrous Met. Soc. China, 14 (2004) 42.
    73 P.J. Kelly, R.D. Arnell, Vacuum, 56 (2000) 159.
    74 B. F. Chen, W.L. Pan, G.P. Yu, J. Hwang, J.H. Huang, Surf. Coat. Technol. 111 (1999) 16.
    75 J. Y. Chen, G. P. Yu, J. H. Huang, Mater. Chem. Phys., 65 (2000) 310.
    76 W. J. Chou, G. P. Yu, J. H. Huang, Corros. Sci., 43 (2001) 2023.
    77 J.H. Huang, F. Y. Ouyang, G..P. Yu, Surf. Coat. Technol., 201 (2007) 7043.
    78 E. Lugscheider, K. Bobzin, M. Moller, Thin Solid Films 356 (1999) 367.
    79 T. Young, Philos. Trans. R. Soc. (London), 9 (1805) 255.
    80 F.M. Fowkes, Ind. Eng. Chem., 56 (1964) 40.
    81 D.K. Owens and R.C. Wendt, J. Appl. Polymer Sci., 13 (1969) 1741.
    82 D. Briggs and M. P. Seah (eds), “Practical Surface Analysis by AES and XPS”, Willey, Chichester (1983).
    83 P. Scherrer, Gött. Nachr, 2 (1918) 98
    84 Leonid V. Azaroff and Martin J. Buerger, “The Powder Method in X-Ray Crystallography”, McGraw-Hill, New York (1958), p.233
    85 C. H. Ma, J. H. Huang, Haydn Chen, Thin Solid Films 418 (2002) 73.
    86 W. C. Oliver, G. M. Pharr, J. Mater. Res. 7 (1992) 1564.
    87 http://www.matweb.com/search/SpecificMaterialPrint.asp?bassnum =CCERAF
    88 CIE, Colorimetry, Tech. Rep., 15, Bureau Central de la CIE, 1971, p.1.
    89 CIE, Recommendations on uniform color spaces, color difference equation and psychometric terms, Tech. Rept. Supplement No. 2 to CIE publication No. 15, Bureau Central de la CIE, 1978, p.1.
    90 American Society for Testing Materials, Symposium on Color, ASTM, Philadelphia, PA, 1941, p.3.
    91 Metals Handbook 9th ed., Vol. 13, 1988, ASM INTERNATIONAL, Metals Park, OH, p.212.
    92 ASTM standards, Section 3, 1996, B117, p.4, and G85, 0.350.
    93 John C. Vickerman, “Surface Analysis- The Principal Techniques”, Wiley, Chichester, 1997, p. 58.
    94 M. Matsuoka, S. Isotani, W. Sucasaire, N. Kuratani, K. Ogata, Surf. & Coat. Technol. (2007), doi: 10.1016/j.surfcoat.2007.11.019
    95 Milosev, H.-H. Strehblow, M. Gaberscek, B. Navinsek, Surf. and Interf. Anal., 24 (1996) 448.
    96 M. Del Re, R. Gouttebaron, J.-P. Dauchot, P. Leclere, G. Terwagne, M. Hecq, Surf. Coat. Technol., 174 (2003) 240.
    97 C. Morant, J. M. Sanz, L. Soriano and F. Rueda, Surf. Sci. 218 (1989) 331.
    98 JCPDS file 89-8345
    99 JCPDS file 49-0949
    100 J.M. Howard, V. Craciun, C. Essary, R.K. Singh, Appl. Phys. Lett. 81/18 (2002) 3431.
    101 Y. C. Li, Study of Deposition Process and Properties for ZrN on Si(100) Substrate with Pre-existed Zr Interlayer. Master Thesis, National Tsing Hua University, Taiwan, R.O.C., 2007.
    102 R.A. Dugdale, J. Mater. Sci., 1 (1996) 160.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE