簡易檢索 / 詳目顯示

研究生: 蔡嘉瑋
論文名稱: 顱內梭狀動脈瘤彈性壁與剛性壁之結構應力與血液動力學之計算分析
Numerical Simulation on Structure Stress and Hemodynamics of Intracranial Fusiform Aneurysms with Rigid and Flexible Walls
指導教授: 劉通敏
口試委員: 黃柏文
林呈
林昭安
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 228
中文關鍵詞: 顱內梭狀動脈瘤流固耦合數值模擬
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 根據行政院衛生署公布民國75~100年間國人十大死因統計表中,腦血管疾病高居第三名,然而腦血管疾病中又以顱內動脈瘤破裂之致死率最高。先前臨床及數值計算文獻皆偏重於探討囊狀動脈瘤並假設為剛性瘤壁,然而其假設與實際人體內之血管壁、動脈瘤壁相異,故本研究乃藉由數值模擬計算方式探討顱內梭狀動脈瘤脈動流場特性及配合流固耦合 (Fluid-Structure Interaction) 技術探討彈性瘤壁在脈動血流衝擊之下的結構應力。本文於入口輸入一內頸動脈(ICA)生理波形並以雙向流固耦合、暫態分析之方式,分別探討改變瘤體之最大直徑與不對稱性對顱內動脈瘤瘤內流場與血管壁結構應力之影響。流體部分之數值計算採用有限體積離散方法(Finite Volume Method)求解依時性非穩態不可壓縮Navier-Stokes方程組,其中時間項採用二階Backward Euler法,而對流項與擴散項分別採用修正型之二階上風法予以離散,並搭配SIMPLEC演算法解決壓力與速度耦合問題。脈動流場參數中沃門斯里數(Womersley number)為4.0,雷諾數(Reynolds number)變化範圍為202~384,平均值為266。計算結果乃透過探討流體之血液動力因子及固體之彈性力學因子來呈現,血液動力因子包含瘤內主流場速度分布、瘤體壁面剪應力(WSS)及壁面壓力分布等;固體部分則採用有限元素法求解力平衡之運動方程式,探討不同幾何外型之結構應力(Effective stress)變化、血管壁破壞應力以及比較假設為剛性壁與彈性壁之間的異同。結果顯示本文之剛性瘤壁數值模擬結果(瘤內速度向量場與壓力分布)與先前實驗文獻相似及相同外型之對應結果比對吻合,並進一步提供了實驗難以量測之特徵物理量包括彈性瘤壁之血流壁剪應力、壁壓力和彈性瘤壁內、外壁結構應力分布。剛性瘤壁與彈性瘤壁相比,血流壁剪應力與壁壓力分別高10~35%及5~40%,顯示由剛性壁模擬動脈瘤之量值皆較彈性壁高;內與外瘤壁結構應力分布亦有所差異,以反曲點為例,內瘤壁為彈性大於剛性13%,外瘤壁為剛性大於彈性17%。在模擬瘤壁以對稱及不對稱方式成長時,發現相較於對稱外型,不對稱者其血流壁剪應力、壁壓力及瘤壁結構應力有明顯集中於反曲點的趨勢。最後研究結果顯示同時分析血流重新附著點位置、壁剪應力、壁壓力、內與外瘤壁結構應力之最大及最小值範圍較僅考慮壁剪應力更能合理預測破裂位置,本文所模擬之梭狀瘤外型與臨床破裂位置一致。


    摘要 I 誌謝 III 目錄 IV 圖表目錄 IX 符號 XXV 第一章 前言 1 1-1 研究背景與動機 1 1-2 文獻探討 3 1-2-1 臨床與模型實驗 3 1-2-2 數值模擬計算 6 1-3 文獻總結 8 1-3-1 臨床與模型實驗 8 1-3-2 數值模擬計算 8 1-4 研究目的 9 第二章 研究方法與理論分析 11 2-1 幾何外型建構與計算模型尺寸 11 2-2 計算模型格點 12 2-3基本假設 13 2-3-1顱內動脈血管之流動現象 13 2-3-2 流體域第一考量參數 15 2-3-3 流體域第二考量參數 16 2-3-4 限制條件 17 2-3-5 固體(血管壁)運動 17 2-4統御方程式 19 2-4-1 流體部分 19 2-4-2 固體部分 20 2-4-3 流固交界面 21 2-5 流體、固體(材料)參數 22 2-6 邊界條件 23 2-6-1流體部分 23 2-6-2 固體部分 23 2-7 起始條件 24 第三章 數值方法 25 3-1 有限體積法 25 3-1-1 積分 25 3-1-2 對流-擴散項(Convection-Diffusion Term)離散化 27 3-1-3 暫態項(Transient Term)離散化 28 3-1-4 源項(Source Term)離散化 30 3-1-5 壓力-速度場耦合(Pressure-Velocity Coupling) 31 3-1-6 疊代求解 35 3-1-7 流體域收斂標準 36 3-2 有限元素法 37 3-2-1 簡介 37 3-2-2 彈性力學理論 39 3-2-3平衡方程式 40 3-2-4應變與位移關係 41 3-2-5應力與應變關係 42 3-2-6有限元素法之基本理論 43 3-2-7有限元素法之基本程序 46 3-2-8 固體域收斂標準 48 3-3流固耦合(Fluid Structure Interaction) 49 3-3-1流固耦合簡介 49 3-3-2流固耦合背景 49 3-3-3整體求解法(MA)與分部求解法(PA) 50 3-3-4單向與雙向耦合 52 3-3-5格點未匹配之流固交界面負載傳遞 53 3-3-6 ALE(Arbitary Lagrangian-Eulerian)我 55 3-3-7 CFD-FEM耦合求解收斂性 56 3-4 格點獨立測試 57 3-4-1 流體域 57 3-4-2 固體域 58 3-5 數值結果與Womersley理論解之數值驗證 59 第四章 結果與討論 62 4-1 剛性壁(Glass)與彈性壁 62 4-2 對稱理想化梭狀動脈瘤(β=1, Model B)模擬結果 65 4-2-1數值模擬與實驗量測之瘤內速度向量場驗證 65 4-2-2瘤內流場(β=1, Model B)-Z*=0剖面之主流流場 67 4-2-3 瘤內流體壁剪應力 68 4-2-4瘤內流體壁壓力 70 4-2-5 血管壁結構應力 71 4-3 對稱理想化梭狀動脈瘤瘤體最大直徑影響 73 4-3-1瘤內流場(β=1)、Z*=0剖面之主流流場 73 4-3-2 瘤內流體壁剪應力 75 4-3-3 瘤內流體壁壓力 78 4-3-4血管壁結構應力 79 4-4 不對稱理想化梭狀動脈瘤瘤體形狀之影響 85 4-4-1模型D(β=1.75)流場驗證 85 4-4-2 模型E(β=2.67)壁面壓力驗證 86 4-4-3瘤內流場(β≠1)-主流流場與二次流 87 4-4-4 瘤內流體壁剪應力 92 4-4-5 瘤內流體壁壓力 96 4-4-6血管壁結構應力 98 4-5 總結與討論 105 4-5-1 剛性(Glass)、彈性管壁差異,以基礎對稱模型B為例 105 4-5-2 彈性壁之基礎對稱模型B(baseline model B) 105 4-5-3 對稱模式一 106 4-5-4 不對稱之模式二 107 4-5-5 總結 109 4-6 顱內梭狀動脈瘤之破裂分析 111 第五章 結論與未來建議 113 5-1 結論 113 5-2 未來建議 116 參考文獻 117 圖表 124

    Agrawal D., Mahapatra, A.K. and Mishra, N.K., (2005) Fusiform aneurysm of a persistent trigeminal artery, Journal of Clinical Neuroscience, 12(4):500-503.

    Burleson A.C., Strother C.M. and Turitto V.T., (1995) Computer modeling of intracranial saccular and lateral aneurysms for the study of their hemodynamics, Neurosurgery, 37(4):774-782.

    Bazilevs Y., Hsu M.C., Zhang Y., Wang W., Liang X., Kvamsdal T., Brekken R., Isaksen J.G., (2010) A fully-coupled fluid-structure interaction simulation of cerebral aneurysms, Computational Mechanics, 46(1):3-16.

    Cebral J.R., Rainald L., Orlando S. and Yim P.J., (2001a) On the model of carotid artery blood flow from magnetic resonance images, Bioengineering Conference ASME 2001, 50.

    Cebral J.R., Yim P.J., Löhner R., Soto O., Marcos H. and Choyke P.L., (2001b) New methods for computational fluid dynamics of carotid artery from magnetic resosnance angiography, Proceedings of SPIE Medical Imaging, San Diego, California, February 2001.

    Cebral J.R., Castro M.A., Burgess J.E., Pergolizzi R.S., Sheridan M.J. and Putman C.M., (2005) Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models, American Journal of Neuroradiology, 26(10):2550-2559.

    Chatziprodromou I., Tricoli A., Poulikakos D. and Ventikos Y., (2007) Haemodynamics and wall remodelling of a growing cerebral aneurysm:a computational model, Journal of Biomechanics, 40(2):412-26.

    Chen S.C., (2010) 顱內梭狀動脈瘤血液動力特性之理論與實驗研究,國立清華大學,碩士論文。

    Cotran, Kumar and Robbins, (1998) Robbin’s pathologic basis of disease, W.B. Saunders Company, 4th edition.
    Crawford T., (1959) Some observations on the pathogenesis and natural history of intracranial aneurysms, Journal of Neurology Neurosurgery & Psychiatry, 22(4):259-266.

    Echiverri H.C., Rubino F.A., Gupta S.R. and Gujrati M., (1989) Fusiform aneurysm of the vertebrobasilar arterial system, Stroke, 20(12):1741-1747.

    Erick J., Yongjie Z. and Kenji S., (2011) Estimating an equivalent wall-thickness of a cerebral aneurysm through surface parameterization and a non-linear spring system, International Journal for Numerical Methods in Biomedical Engineering, 27(7):1054–1072.

    Estanislao O., Mathieu D.C., Christopher M.P., Juan R.C. and Alejandro F.F., (2007) Analysis of intracranial aneurysm wall motion and its effects on hemodynamic patterns, Proceedings of SPIE Medical Imaging, 65112A.

    Ferguson G.G., (1970) Turbulence in human intracranial saccular aneurysms, Journal of Neurosurgery, 33(5):485-497.

    Ferguson G.G., (1972) Physical factors in the initiation, growth, and rupture of human intracranial saccular aneurysms, Journal of Neurosurgery, 37:666-677.

    Finol E.A., Keyhani K. and Amon C.H., (2003) The effect of asymmetry in abdominal aortic aneurysms under physiologically realistic pulsatile flow conditions, Journal of Biomechanical Engineering, 125(2):207–17.

    Fillinger M.F., Marra S.P. and Raghavan M.L., (2003) Prediction of rupture risk in abdominal aortic aneurysm during observation: wall stress versus diameter, Journal of Vascular Surgery,37(4):724-32.

    Feng, Y., Wada, S., Ishikawa, T., Tsubota, K. and Yamaguchi, T., (2008). A rule-based computational study on the early progression of intracranial aneurysms using fluid-structure interaction: comparison between straight model and curved model, Journal of Biomechanical Science and Engineering, 3(2):124-137.

    Hashimoto T., (1984) Dynamic measurement of pressure and flow velocities in glass and silastic berry aneurysms, Journal of Neurology Research, 6(1-2):22-28.

    Hassan T., Timofeev E.V., Ezura M., Saito T., Takahashi A., Takayama K. and Yoshimoto T., (2003) Hemodynamics analysis of an adult vein of galen aneurysm malformation by use of 3D image-based computational fluid dynamics, American Journal of Neuroradiology, 24(6):1075-1082.

    Hardesty W.H., Roberts B., Toole J.F. and Royster H.P., (1960) Studies of carotid-artery blood flow in man, New England Fournal of Medicine, 263:944-946.

    Juan C.L., (2007) The biomechanics of arterial aneurysms, Annual Review of Fluid Mechanics, 39(1):293–319.

    Jou L.D., Quick C.M., Young W.L., Lawton M.T., Higashida R., Martin A. and Saloner D., (2003) Computational approach to quantifying hemodynamic forces in giant cerebral aneurysm, American Journal of Neuroradiology, 24(9):1804-1810.

    Jou L.D., Wong G., Dispansa B., Lawton M.T., Higashida R.T., Young W.L. and Saloner D., (2005) Correlation between lumenal geometry changes and hemodynamics in fusiform intracranial aneurysm, American Journal of Neuroradiology, 26(9):2357-2363.

    Jay D. Humphrey, (2002) Cardiovascular solid mechanics, Springer-Verlag, NY.

    Kayembe K.N., Sasahara M. and Hazama F., (1984) Cerebral aneurysms and variations in the circle of willis, Stroke, 15(5):846-850.

    Kelly S.C. and O’Rourke M. J., (2010) A two-system, single-analysis, fluid–structure interaction technique for modelling abdominal aortic aneurysms, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 224(8):955-969.

    Leroux P., Winn H., Newell D., (2004) Management of cerebral aneurysms, Saunders, Philadelphia.

    Little J.R., St. Louis P., Weinstein M. and Dohn D.F., (1981) Giant fusiform aneurysm of the cerebral arteries, Stroke, 12(2):183-188.

    Liou T.M., Chang W.C. and Liao C.C., (1997) LDV measurements in lateral model aneurysms of various sizes, Experiments in Fluids, 23(4):317-324.

    Malek A.M., Alper S.L. and Izumo S., (1999) Hemodynamic shear stress and its role in atherosclerosis, The Journal of the American Medical Association, 282(21):2035-42.

    Miyamoto S., Nagata I., Yamada K., Ueno Y., Nakahara I., Toda H., Hattori I. and Kikuchi H., (1999) Delayed thrombus propagation after parent artery clipping for giant fusiform aneurysms of the circle of willis, Surgical Neurology, 51(1):89-93.

    Moore J.E., Xu C., Glagov S., Zarins C.K. and Ku D.N., (1994) Fluid wall shear stress measurements in a model of human abdominal aorta: oscillatory behavior and relationship to atherosclerosis, Atherosclerosis, 110(2):225-40.

    Monson K.L., (2001) Mechanical and failure properties of human cerebral blood vessels, PhD thesis, UC Berkeley.
    Nichols W. and O’Rourke M., (1990) McDonald’s flow in arteries, Lea & Febiger, Philadelphia, London.

    Perktold K., Perter R. and Resch, M., (1989) Pulsatile non-newtonian blood flow simulation through a bifurcation with an aneurysm, Biorheology, 26(6):1011-1030.

    Rhie C. M. and Chow W. L., (1983) Numerical study of the turbulent flow past an airfoil with trailing edge separation, American Institute of Aeronautics and Astronautics, 21(11):1525-1535.

    Rosenorn J., Eskesen V., Schmidtt K. and Ronde F., (1987) The risk of rebleeding from ruptured intracranial aneurysms, Journal of Neurosurgery, 67(3):329-332.

    Ryo T., Marie O., Toshio K., Kiyoshi T., Tayfun E.T., (2008) Fluid-structure interaction modeling of a patient-specific cerebral aneurysm: influence of structural modeling, Computational Mechanics, 43(1):151–159.

    Ryo T., Marie O., Toshio K., Kiyoshi T., Tayfun E. T., (2011) Influencing factors in image-based fluid-structure interaction computation of cerebral aneurysms, International Journal for Numerical Methods in Fluids, 65(1-3):324–340.

    Rhee K., Han M.H. and Cha S.H., (2002) Changes of flow characteristics by stenting in aneurysm models: influence of aneurysm geometry and stent porosity, Annals of Biomedical Engineering, 30(7):894-904.

    Sahs A.L. (1966) Observations on the pathology of saccular aneurysms, Journal of Neurosurgery, 24(4):792-806.

    Salsac A.V., (2005) Changes in the hemodynamic stresses occurring during the enlargement of abdominal aortic aneurysms, PhD thesis. University of California, San Diego.

    Sheard G.J., (2009) Flow dynamics and wall shear-stress variation in a fusiform aneurysm, Journal of Engineering Mathematics, 64(4):379-390.

    Stehbens W.E., (1983) The pathology of intracranial arterial aneurysms and their complications, In: Fox, J.L. ed, Intracranial Aneurysms, New York: Springer-Verlag, 272-357.

    Steiger H.J., Poll A., Liepsch D. and Reulen H.J., (1987) Hemodynamic stress in lateral saccular aneurysms, Acta Neurochirurgica, 86:98-105.

    Scotti C.M., Shkolnik A.D., Muluk S.C., Finol E.A., (2005) Fluid-structure interaction in abdominal aortic aneurysms: effects of asymmetry and wall thickness, Biomedical Engineering Online, 4(1):64.

    Tognetti F., Limoni P. and Testa C., (1983) Aneurysm growth and hemodynamic stress, Surgical Neurology, 20(1):74-78.

    Tsai T.H., (2006) 應用影像重建技術、數值模擬及流場觀測探討內頸動脈瘤之血液動力特性,國立清華大學,碩士論文。

    Valerie D., Yannick K., Eric B., Emmanuel G., (2007) Flow behavior in an asymmetric compliant experimental model for abdominal aortic aneurysm, Journal of Biomechanics, 40(11): 2406–2413.

    Valencia A., Solis F., (2006) Blood flow dynamics and arterial wall interaction in a saccular aneurysm model of the basilar artery, Computers and Structures, 84(21):1326-1337.

    Wardlaw J.M. and White P.M., (2000) The detection and management of unruptured intracranial aneurysms, Brain, 123(2):205–221.

    Xenos M., Peter D.A., Rambhia S.H., Alemu Y. and Bluestein D., (2010) Fluid structure interaction for patient specific risk assessment in abdominal aortic aneurysms, Bioengineering Conference, Proceedings of the 2010 IEEE 36th Annual Northeast.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE