簡易檢索 / 詳目顯示

研究生: 沈謙
論文名稱: 電漿顯示器烙痕邊緣區放電機制的分析與研究
Formation Mechanism of Image Sticking Phenomenon of Adjacent Cells in AC-PDP
指導教授: 柳克強
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 76
中文關鍵詞: 烙痕
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文的研究中設計了若干實驗觀察邊界烙痕的放電現象,除了一般文獻中常見的在黑烙痕周圍的邊界區有較亮的發光之外,從實驗結果中可以發現邊界區之所以有較強的可見光是由於重置放電增強的結果。而在本實驗所使用的商用面板中,邊界烙痕對縱向畫素的影響範圍較水平向要廣,前者影響的範圍有七個畫素之多,而後者僅影響到一個畫素。另外在實驗中也比較了放電時間與放電強度的關係,從實驗數據中可以觀察到,當放電提前的時間愈長,其放電強度愈強,放電歷時愈久。從觀察烙痕現象回覆所需的時間中發現,邊界區放電提前的現象在兩個小時到三個小時間消失,與溫度回覆所需的時間相近,從這點推測邊界區的放電是受到烙痕區所傳來的溫度所影響而提前,烙痕區本身則有另外的機制使得放電強度降低。在隨後的實驗中發現當畫素經過維持放電的時間愈長,之後的重置放電會變得愈弱。在本論文的最後則提出使得烙痕區放電減弱的可能的物理機制。在熱機的時候其溫度對烙痕區以及周圍的邊界區產生影響,使得這些畫素的放電強度變強,而在切換至黑畫面時,由於烙痕區先前經過長時間的維持放電的關係,使得其重置放電較邊界區為弱,而造成烙痕區周圍邊界較亮的邊界烙痕現象出現。


    In this thesis, several experiments are designed to observe the discharge phenomenon of adjacent image sticking. According to experiment result, it is found that the reason the adjacent area has brighter luminance is because of the stronger reset discharge. On the commercial display panel used in this experiment, it is found, the range which adjacent image sticking affects in vertical dimension is greater than that of horizontal dimension. Comparing the discharge time and discharge intensity, it is observed that the degree which the discharge gets earlier has direct proportion to discharge intensity and discharge interval. Form the result of the recovery time of adjacent image sticking, it is found that the discharge of adjacent cell recovers in two to three hours which is near to the recovery time that temperature needs. It might be the temperature transmitted from the sticking area makes the adjacent area discharges stronger and earlier. And the reason that the sticking area has weaker discharge than adjacent area might because it has been discharged in previous sustain period for a long time. In the end of this thesis, a possible physical mechanism of the adjacent sticking phenomenon is introduced. The temperature affects both sticking and adjacent area when the panel is warmed up and causes them have stronger discharge. When the panel is switched to dark background, the discharge intensity of sticking area would be lower than that of adjacent area because it was treated for long period of sustain discharge. The the cells surround the sticking area would have the brightest luminance and present the adjacent image sticking.

    Abstract (Chinese)……………………………………………………I Abstract (English)……………………………………………………II Acknowledge (Chinese)………………………………………………III 1. Introduction…………………………………………………………1 2. Working mechanism of AC-PDP……………………………………3 2.1 Cell structure…………………………………………………3 2.2 Waveform driving method………………………………………5 2.3 Gray Scale Production Method………………………………8 3. Image Sticking Phenomenon and Recent Research …………11 3.1 Typical Image Sticking Phenomenon………………………11 3.2 Recent Discussions of Formation Mechanism……………14 3.2.1 Effect of MgO and Phosphor………………………………14 3.2.2 Effect of Gray Scale and Pulse Number………………15 3.2.3 Effect of Temperature……………………………………17 3.3 Particular Image Sticking Phenomenon……………………19 3.4 Background Image Sticking Phenomenon of Adjacent Cell...23 4. Investigation Methods and Experimental Setup……………30 4.1 Investigation Methods………………………………………30 4.2 Definition of Sticking Area………………………………31 4.3 Experimental Setup……………………………………………32 5. Experiment results and Discussion……………………………37 5.1 Discharge Contribution for Adjacent Image Sticking…37 5.2 Adjacent Image Sticking Phenomenon on Commercial Plasma Display Panel…………………………………………43 5.2.1 Discharge Time of Background, Adjacent and Sticking Area……………………………………………44 5.2.2 Discharge Intensity of Background, Adjacent and Sticking Area……………………………………………50 5.2.3 Lasted Time of Adjacent Image Sticking ……………………………………………………………53 5.3 Effect of Sustain Discharge (without temperature effect……………………………………………………………57 5.4 Briefly Conclusion of Experiment Results………………60 6. Possible Mechanism of Adjacent Image Sticking phenomenon ………………………………………………………………………61 6.1 Relations between discharge time and temperature effect………61 6.2 Sustain discharge and the decrement of secondary electron emission coefficient of MgO……………………66 7.Conclusion……………………………………………………………74 Reference……………………………………………………………75

    Reference
    1. J. P. Boeuf, J. Appl. D : Appl. Phys. 36, R53 (2003)
    2. Komaki T, et al., IDW’99 , 587 (1999)
    3. Sato Y, et al., SID’02, 1017 (2002)
    4. Toyoda O, et al., IDW’99, 599 (1999)
    5. Hashimoto Y, et al., SID’02, 151 (2002)
    6. 吳智瑋 國立清華大學工程與系統科學研究所 九十四年碩士論
    文 (2005)
    7. Yoshikawa K, et al., Japan. Display, 605 (1992)
    8. H. S. Tae, et al., IEEE Trans. On Plasma Science, vol.
    32, 2189 (2004)
    9. J. H. Choi, et al., IDW’03, 913 (2003)
    10. J. W. Han, et al., IDW’04, 965 (2004)
    11. H. S. Tae, et al., SID’03, 788 (2003)
    12. J. W. Han, et al., SID’05 Digest, 1036 (2005)
    13. J. W. Han, et al., IDW’03, 917 (2003)
    14. JOBIN YVON, I-spectrum ONE ICCD User Manual Mar. (2000)
    15. 蔡依庭 國立清華大學工程與系統科學研究所 九十五年碩士論
    文 (2006)
    16. J. J. Scholtz et al., Applied Surface Science, 111,
    259, (1997)
    17. Y. M. Sung et al., Japanese Journal of Applied Physics,
    43, No.2, 800, (2004)
    18. H. J. Lee et al., SID’04 Digest, 214 (2004)
    19. B. G. Cho, et al, IEEE Trans. Electron Devices, 1758
    (2003)
    20. Y. G. Han, et al, IMID’ 05 Digest, 263 (2005)
    21. J. W. Han, et al, SID’04 Digest, 532 (2004)
    22. B. J. Shin, et al, IEEE Trans. On Plasma Science,vol.
    33,162 (2005)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE