簡易檢索 / 詳目顯示

研究生: 陳義忠
Yi-Jhong Chen
論文名稱: 具有光感測器的液晶顯示面板的數位輸出讀取電路
A digital readout circuit for photo-sensor embedded LCD panel
指導教授: 黃惠良
Huey-Liang Hwang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 59
中文關鍵詞: 光感測電路數位類比轉換器
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,平板顯視觸控輸入應用領域,利用非晶矽薄膜電晶體當作光感側元件的應用及發展越來越多元化。於配合主動式液晶顯示器的應用上,通常需要外部多加元件,此如電阻式、電容式 或是電感式的觸控平板元件。這不僅增加元件的材料成本,也相對的影響顯示器的光穿透效率。但若是搭配內建於顯示器的被動式感應電路來使用,則可省去外部多加元件,並可大幅提昇透光度及解析度。此設計為利用平面顯示器前段製程技術,將光感側元件製作在每一個影像畫素中,利用相同於驅動液晶的非晶矽薄膜電晶體,來當感測光信號的元件。此時每一個光信號將可透過光感測電晶體而儲存下來,再經由循序的電路定址,輸出所要的信號,即可達到讀取的功能。
    本篇論文裡介紹一種應用在感光式液晶顯示面板的輸出讀取電路,由於感光式的面板是利用光二極體當感應器並且利用光筆當輸入所以容易受背景光源的干擾,故我們希望能把光輸入訊號數位化,藉由數位化後的訊號處理能把訊號跟雜訊兩者分開,本篇論文的重點在於利用極簡單的方法和電路來達成我們要的效果,並利用遲滯型比較器和抗溫度變化的電流鏡來穩定電路並避免雜訊對於電路的甘擾且加入靴帶式升壓電路來提升電路可正常作範圍,此電路優點在於可以縮小電路面積並避免訊號因雜訊干擾而跳動產生的訊號誤判,藉由這樣的讀出電路我們可以對應輸入訊號的軌跡,將輸入的光訊號做正確的讀出。本篇論文的模擬參數是採用 TSMC0352P4M 製程,以HSPICE為模擬軟體。


    Recently, for interactive purposes, detecting devices are been developed on the existing TFT-LCD panels. Many of them are based on resistive, capacitive or inductive touch technology. All these solutions require externally added components or one more layer of screen, which add the cost and degrade the optical performance. In our study, we use a novel approach by building an additional TFT photo-diode in the existing LCD display pixel as a detecting element. This diode can be embedded during the panel manufacturing process and incurring no additional cost. After the post-product evaluation, this diode also shows no impediment to the light efficiency. In this way, by using the photo-diode array and by going with a designed detecting circuit, the imaging signal that appears on the panel can then be read out.
    In this study we investigate a readout circuit that can be used to distinguish the noise that comes from environment and the signal that comes from our remote controlled light-pen on hand. By the circuit we can get the required results of lower power consumption and smaller integrated chip area in comparison with using conventional ADC. In addition to the advantage of low power supply it has high output voltage swing and is suitable for implementation in advanced submicron CMOS technologies. The circuit proposed above is design in a TSMC 0.35um process and verified by HSPICE program.

    Contents Abstract(English) …….……………………………...………………………………1 Abstract(Chinese) …………………………………..……………………………….2 Acknowledge………………………………………...……………………………….3 List of Contents………………………………………………………………………4 List of Figures……………………………..…………………………………………6 List of Tables……………………………………………………………...………….9 CHAPTER 1: Introduction of TFT photo sensor array………………………………10 1-1 Introduction………………………………..……………………………………………………10 1-2 Flat- panel Imager using a-Si TFT Array………………………………………………………12 1-3 Fingerprint Scanner Using a-Si : H TFT Array……………………………………………...…14 1-4 TFT Arrays for Direct-Conversion X-Ray Sensors and High-Aperture AMLCDS……………18 1-5 Active Matrix LCD with Integrated Optical Touch Panel-Planar system……………………...21 CHAPTER 2: Noise and analog to digital circuit……...…………………………25 2-1 Introduction of the noise………………...……………...………………………………………25 2-1-1 Thermal noise………………………………..………….……………………………………25 2-1-2 Dark current…………………………………….……………………………………………26 2-1-3 Fixed pattern noise……………………………………...……………………………………26 2-2 Analog to digital circuit……………………………………...…………………………………27 2-2-1 Analog to digital circuit………………………………………………………………………27 2-2-2 Signal to Noise Ratio……………………………………………………………………….28 2-2-3 Flash A/D Converter………………………………………………………………………….30 2-2-4 Two-step A/D Converter……………………………………………………………………...31 2-2-5 Pipelined A/D Converter……………………………………………………………………...33 2-2-5 Cyclic A/D Converter………………………………………………………………...………34 CHAPTER 3: Architectures of the readout circuit………………………………36 3-1 Introduction of the readout circuit………………………………………………………………36 3-2 Active Pixel Sensor……………………………………………………………………………..38 3-3 Boost Converter Circuit………………………………………………………………………...39 3-4 Stable Current Reference……………………………………………………………………….40 3-4 Hysteresis comparator…………………………………………………………………………..42 3-5Converter and readout circuit……………………………………………………………………45 CHAPTER 4: Simulation result……………………………...……………………47 4-1 APS Simulation…………………………………………………………………………………47 4-2 Stable Current Reference and Hysteresis comparator…………………………………………..50 4-3 Result of digital Output…………………………………………………………………………53 CHAPTER 5 Conclusions………………………………………………………….56 REFERENCE………………………………………………………………………..57

    References

    1. A. G. Lewis, I-W. Wu, T. Y. Huang, A. Chiang, and R. H. Bruce, Active matrix liquid crystal display design using low and high temperature processed polysilicon TFTs, in IEDM Tech. Dig., 1990, pp.843-846
    2. Y. Matsueda, M. Ashizawa, S. Aruga, H. Ohshima, and S. Morozumi, New technologies for compact TFT LCDs with high-aperture ratio, Soc. Information Display, Tech. Dig., pp.315-318,1990.
    3. R.G. Stewart, S.N.Lee, A.G. Ipri, D.A. Furst, S.A. Lipp, and W.R. Roach, A 9V polysilicon LCD with integrated gray-scale drivers, Soc. Information Display, Tech. Dig., pp.319-322,1990.
    4. M. Stewart, R.S. Howell, L. Pires, and M.K. Hatalis, Polysilicon TFT technology for active matrix OLED displays, IEEE Trans. Electron Devices, vol. 48, pp845-851, 2001.
    5. H. Kuiyama et al., An asymmetric memory cell using a C-TFT for ULSI SRAM, Symp. On VLSI Tech., p.38, 1992
    6. T. Yamanaka, T. Hashimoto, N. Hasegawa, T. Tanala, N. Hashimoto, A. Shimizu, N. Ohki, K. Ishibashi, K. Sasaki, T. Nishida, T. Mine, E. Takeda, and T. Nagano, Advanced TFT SRAM cell technology using a phase-shift lithography, IEEE trans. Electron Devices, Vol. 42,pp.1305-1313,1995
    7. K. Yoshizaki, H. Takaashi, Y. Kamigaki, T. Asui, K. Komori, and H. Katto, ISSCC Digest of Tech., p.166, 1985
    8. N.D.Young, G. Harkin, R.M. Bunn, D.J.McCulloch, and I.D. French, The fabrication and characterization of EEPROM arrays on glass using a low-temperature poly-Si TFT process,IEEE trans. Electron Devices, Vol. 43, pp.1930-1936, 1996.
    9. T. Kaneko, Y. Hosokawa, M. Tadauchi, Y. Kita, and H. Andoh, 400 dpi Integrated Contact Type Linear Image Sensors with Poly-Si TFTs Analog Readout Circuit and Dynamic Shift Registers,IEEE Trans.Electron Devices, Vol.38, No.5,pp. 1086-1039, 1991
    10. Y. Hayashi, H. Hayashi, M. Negishi, T. Matsushita, A Thermal Printer Head with CMOS Thin-Film Transistors and Heating Elements Integrated on a Chip, IEEE Solid-State Circuits Conference(ISSCC), p.266, 1998
    11. N. Yamauchi, Y. Inaba, and M. Okamura, An Integrated Photo detector Amplifier using a-Si p-i-n Photodiodes and Poly-Si Thin Film Transistors, IEEE Photonic Tech. Lett., Vol. 5, p.319, 1993
    12. M.G. Glark, Current Status and Future Prospects of Poly-Si, IEEE Proc. Circuits Devices Syst., Vol. 141, No. 1, p3.3,1994
    13. S.D.S. Malhi, H. Shichijo, S.K. Banerjee, R. Sundareson, M. Elahy, G.P. Pollack, W. Richardson, A.H. Sha, L.R. Hite, R.H. Womark, P. Chatterjee, and H. William, Characteristics and three-dimension integration of MOSFETs in a small-grain LPVCD polycrystalline silicon, IEEE trans. Electron Devices, Vol. ED-32, No.2, pp.258-281, 1995
    14. Sunetra K.Mendis , Sabrina E. Kemeny and Eric R. Fossum,”A 128×128 CMOS Active Pixel Image Sensor for Highly Integrated Imaging Systems”,IEEE IEDM 93, pp.583-586 , 1993
    15. S. Mendis, S. Kemeny, and E. Fossum, “CMOS active pixel image sensor”,IEEE Tran.Electron Device, vol.41,pp. 452-453,Mar,1994
    16. M.F.Snoeij,A.J.P Theuwissen and J.H.Huijsing“Read-out Circuits for Fixed-Pattern-Noise Reduction in a CMOS Active Pixel Sensor” IEEE Tran. VOL. 45 ,pp.676-679 ,2002
    17. Iliana L. Fujimori, Ching-Chun Wang and Charles G.Sodini, “A 256X256 CMOS Differential Passive Pixel Imager with FPN Reduction Techniques” IEEE Journal of Solid-State Circuits,Vol.35,No. 12,December, 2000
    18. Jih-Shin Ho,Ming-Cheng Chiang, Han-Min Cheng,Tzu-Ping,and Ming-Jer Kao “A New Design for A 1280×1024 Digital CMOS Image Sensor with Enhanced Sensitivity, Dynamic Range and FPN”IEEE,IEDM pp.235-238,2002
    19. Guy Meynants, Bart Dierickx, Dirk Uwaerts, and Jan Bogaerts, “Fixed Pattern Noise Suppression by a Differential Readout Chain for a Radiation Tolerant Image Sensor” IEEE, 2002
    20. Nixon, R.H.; Kemeny, S.E.; Pain, B.; Staller, C.O.; Fossum, E.R.,” 256×256 CMOS active pixel sensor camera-on-a-chip”, Solid-State Circuits, IEEE Journal of , Volume: 31 , Issue: 12 , Dec. 1996 ,Pages:2046 – 2050
    21. Degerli, Y.; Lavernhe, F.; Magnan, P.; Farre, P.J,” Column readout circuit with global charge amplifier for CMOS APS imagers”, Electronics Letters , Volume: 36 Issue: 17 , 17 Aug. 2000 ,Pages:1457 – 1459
    22. "CMOS Analog Circuit Design" by P.E. Allen and D.R. Holberg, 2nd Edition
    23.Behzad Razavi “Design of Analog CMOS Integrated Circuits” ch9,ch10,ch12,2002,
    24 SANSEN W.M. A COM temperature compensated current reference IEEE J. Solid –State Circuits 1988
    251v CMOS current reference with temperature coefficient Iiwei and Bingxue Shi Elecrtronics Letter 2003
    26 A new correlated double sampling(CDS)technique for low voltage design environment in advanced CMOS technology esscirc2002

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE