簡易檢索 / 詳目顯示

研究生: 陳齊偉
論文名稱: Synthesis of poly(2,6-dimethyl-1,4-phenylene oxide) derivatives in water using water-soluble copper complex catalyst with natural ligands
指導教授: 堀江正樹
口試委員: 蘇安仲
游進陽
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 60
中文關鍵詞: poly(2,6-dimethyl-1,4-phenylene oxide)water-soluble copper complex catalystnatural ligands
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) was synthesized by oxidative polymerization of 2,6-dimethylphenol (DMP) using a water-soluble copper complex catalyst under oxygen and with natural ligands in alkaline water. Arginine, guanine, adenine, cytosine, histidine, and folic acid were used as ligands for the copper complex. Arginine performed the best, with a yield of 72%, a number average molecular weight (Mn) of 4400, and a molecular weight distribution (Mw/Mn) of 1.7. It was then used to optimize the reaction conditions. Surfactants, temperature, catalyst and sodium hydroxide concentration were varied in copolymerization of DMP and 2-allyl-6-methylphenol (AMP) to produce allyl-containing PPO with 77% yield (Mn = 4500, Mw/Mn = 1.8). The optimum conditions were also applied to copolymerization of DMP, AMP, and bisphenol A, as well as vinylbenzyl terminated copolymerization of DMP and diallyl bisphenol A, leading these PPO derivatives analogs containing thermally cross-linkable allyl and vinyl groups. The thermal properties of these thermosetting PPOs were studied by differential scanning calorimeter, thermogravimetric analysis, and Fourier-transform infrared spectroscopy.


    Abstract Chapter 1. Introduction 1-1. Poly(2,6-dimethyl-1,4-phenylene oxide)s (PPOs) in industry 1-1-1. History 1-1-2. Present applications 1-1-3. Future outlook 1-2. Synthesis of poly(2,6-dimethyl-1,4-phenylene oxide)s in organic solvent 1-3. Synthesis of poly(2,6-dimethyl-1,4-phenylene oxide)s in water Chapter 2. Results and discussion 2-1. Oxidative polymerization of 2,6-dimethylphenol (DMP) in water 2-1-1. Catalytic activity of copper complex with various natural ligands 2-1-2. Catalytic activity of copper(I) and copper(II) precursors 2-2. Oxidative copolymerization of 2,6-dimethylphenol (DMP) and 2-allyl-6-methylphenol (AMP) in water 2-2-1. Effects of surfactants on activity 2-2-2. Effects of reaction temperature and arginine concentration on activity 2-2-3. Effects of catalyst concentration on activity 2-2-4. Effects of sodium hydroxide (NaOH) on activity 2-3. Synthesis and characterization of poly(2,6-dimethyl-1,4-phenylene oxide) derivatives containing thermally cross-linkable groups in water 2-4. Thermal properties Chapter 3. Conclusions and outlook 3-1. Conclusions 3-2. Outlook Chapter 4. Experimental section 4-1. General methods 4-2. Polymerization of DMP in water 4-3. Copolymerization of DMP and AMP in water 4-4. Copolymerization of DMP, AMP, and BPA in water 4-5. 4-vinylbenzyl terminated copolymerization of DMP and DABPA References

    [1] Seike, Y.; Okude, Y.; Iwakura, I.; Chiba, I.; Ikeno, T.; Yamada T. Macromol. Chem. Phys. 2003, 204, 1876.
    [2] Liang, G.; Meng, J.; Zhao, L. Polym. Int. 2003, 52, 966.
    [3] Chao, H. I. S.; Whalen, J. M. J. Appl. Polym. Sci. 1996, 59, 473.
    [4] Hedrick, J. L.; Russell, T. P.; Hedrick, J. C.; Hilborn, J. G. J. Polym. Sci. Part A: Polym. Chem. 1996, 34, 2879.
    [5] Lin, C. H.; Wang, C. S. Polymer 2001, 42, 1869.
    [6] Lin, C. H.; Chiang, J. C.; Wang, C. S. J. Appl. Polym. Sci. 2003, 88, 2607.
    [7] Hwang, H. J.; Shieh, J. Y.; Li, C. H.; Wang, C. S. J. Appl. Polym. Sci. 2007, 103, 1942.
    [8] Hwang, H. J.; Li, C. H.; Wang, C. S. Polymer 2006, 47, 1291.
    [9] Meng, J. R.; Liang, G. Z.; Zhao, L. Compos. Sci. Technol. 2002, 62, 783.
    [10] Wang, C. S.; Shieh, J. Y. J. Appl. Polym. Sci. 1999, 73, 353.
    [11] Hwang, H. J.; Hsu, S. W.; Wang, C. S. J. Appl. Polym. Sci. 2008, 110, 1880.
    [12] Krijgsman, J.; Feijen, J.; Gaymans, R. J. Polymer 2003, 44, 7055.
    [13] Hwang, H. J.; Hsu, S. W.; Wang, C. S. J. Macromol. Sci. Part A Pure Appl. Chem. 2008, 45, 1049.
    [14] Hay, A. S.; Blanchard, H. S; Endres, G. F.; Eustance, J. W. J. Am. Chem. Soc. 1959, 81, 6335.
    [15] Hay, A. S. J. Polym. Sci. 1962, 58, 581.
    [16] Hay, A. S. J. Polym. Sci., Part A: Polym. Chem. 1998, 36, 505.
    [17] van Aert, H. A. M; van Gendersen, M. H. P.; van Steenpaal, G. J. M. L.; Nelissen, L.; Meijer, E. W. Macromolecules 1997, 30, 6056.
    [18] Gamez, P.; Gupta, S.; Reedijk, J. C.R. Chim. 2007, 10, 295.
    [19] Roubaty, J. L.; Breant, M.; Lavergne, M.; Revillon, A. Macromol. Chem. 1978, 179, 1151.
    [20] Baesjou, P. J.; Driessen, W. L.; Challa G.; Reedijk J. J. Am. Chem. Soc. 1997, 119, 12590.
    [21] Kobayashi, S.; Higashimura, H. Prog. Polym. Sci. 2003, 28, 1015.
    [22] Boccuzzi, F.; Martra, G.; Partipilo Papalia, C. P.; Ravasio, N. J. Catal. 1999, 184, 327.
    [23] Viersen, F. J.; Challa, G.; Reedijk, J. Polymer 1990, 31, 1361.
    [24] Gamez, P.; van Dijk, J.; Driessen, W. L.; Challa, G.; Reedijk, J. Adv. Synth. Catal. 2002, 344, 890.
    [25] Chen, W.; Challa, G. Eur. Polym. J. 1990, 26, 1211.
    [26] Gamez, P.; Simons, C.; Steensma, R.; Driessen, W. L.; Challa, G.; Reedijk, J. Eur. Polym. J. 2001, 37, 1293.
    [27] Chung, Y. M.; Ahn, W. S.; Lim, P. K. J. Mol. Catal. A. Chem. 1999, 148, 117.
    [28] Chung, Y. M.; Ahn, W. S.; Lim, P. K. Appl. Catal. A. Gen. 2000, 192, 165.
    [29] Gamez, P.; Simons, C.; Aromi, G.; Driessen, W. L.; Challa, G.; Reedijk, J. Appl. Catal., A 2004, 214, 187.
    [30] Li, K. T.; Shieh D. C. Ind. Eng. Chem. Res. 1994, 33, 1107.
    [31] Ercoli, M.; Fusi, A.; Psaro, R.; Ravasio, N.; Zaccheria, F. J. Mol. Catal. A: Chem. 2003, 204, 729.
    [32] Shibasaki, Y.; Nakamura, M.; Ishimaru, R.; Kondo, J. N.; Ueda, M.; Chem. Lett. 2005, 34, 662.
    [33] Verlaan, J. P. J.; Bootsma, J. P. C.; Challa, G. J. Mol. Catal. 1982, 14, 211.
    [34] Chen, W.; Challa, G. Polymer 1990, 31, 2171.
    [35] Koning, C. E.; Eshuis, J. J. W.; Viersen, F. J.; Challa, G. React. Polym. 1986, 4, 293.
    [36] Zhao, Y.; Wu, L.; Li, B. G.; Zhu, S. J. Appl. Polym. Sci. 2010, 117, 3473.
    [37] Al Andis, N. M. J. Chem. 2013, 85692.
    [38] Desimone, J. M. Science 2002, 297, 799.
    [39] Li, C. J.; Chen, L. Chem. Soc. Rev. 2006, 35, 68.
    [40] Saito, K.; Masuyama, T.; Oyaizu, K.; Nishide, H. Chem. Eur. J. 2003, 9, 4240.
    [41] Angerer, P. S.; Studer, A.; Witholt, B.; Li, Z. Macromolecules 2005, 38, 6248.
    [42] Higashimura, H.; Fujisawa, K.; Moro-oka, Y.; Kubota, M.; Shiga, A.; Terahara, A.; Uyama, H.; Kobayashi, S. J. Am. Chem. Soc. 1998, 120, 8529.
    [43] Higashimura, H.; Fujisawa, K.; Kubota, M.; Kobayashi, S. J. Polym. Sci., Part A: Polym. Chem. 2005, 42, 1955.
    [44] Chung, Y. M.; Ahn, W. S.; Lim, P. K. J. Mol. Catal. A: Chem. 1999, 148, 117.
    [45] Gamez, P.; van Dijk, J. A. P. P.; Driessen, W. L.; Challa, G.; Reedijk, J. Adv. Synth. Catal. 2002, 344, 890.
    [46] Saito, K.; Tago, T.; Masuyama, T.; Nishide, H. Angew. Chem. Int. Ed. 2004, 43, 730.
    [47] Saito, K.; Kuwashiro, N.; Nishide, H.; Polymer 2006, 47, 6581.
    [48] Pant, S.; Hearn, M. T. W.; Saito, K. Aust. J. Chem. 2010, 63, 502.
    [49] Wan, L. M.; Li, H. X.; Zhao, W.; Ding, H. Y.; Fang, Y. Y.; Ni, P. H.; Lang, J. P. J. Polym. Sci., Part A: Polym. Chem. 2012, 50, 4864.
    [50] Liu, Q.; Shentu, B.; Zhu, J.; Weng, Z. J. Appl. Polym. Sci. 2007, 104, 3649.
    [51] Li, X. H.; Meng, X. G.; Pang, Q. H.; Liu, S. D.; Li, J. M.; Du, J.; Hu, C. W. J. Mol. Catal. A: Chem. 2010, 328, 88.
    [52] Wang, H.; Zhang, W.; Shentu, B.; Gu, C.; Weng, Z. J. Appl. Polym. Sci. 2012, 125, 3730.
    [53] Gu, C.; Xiong, K.; Shentu, B.; Zhang, W.; Weng, Z. Macromolecules 2010, 43, 1695.
    [54] Wang, H.; Shentu, B.; Zhang, W.; Gu, C.; Weng, Z. Eur. Polym. J. 2012, 48, 1205.
    [55] Maier, G. Prog. Polym. Sci. 2001, 26, 3.
    [56] Fukuhara, T.; Shibasaki, Y.; Ando, S.; Ueda, M. Polymer 2004, 45, 843.
    [57] Nunoshige, J.; Akahoshi, H.; Shibasaki, Y.; Ueda M. Chem. Lett. 2007, 36, 238.
    [58] Curtis, A. J. J. Chem. Phys. 1962, 36, 3500.
    [59] Nunoshige, J.; Akahoshi, H.; Ueda, M. High Perform. Polym. 2010, 22, 458.
    [60] Merfeld, G. D.; Yeager, G. W.; Chao, H. S.; Singh, N. Polymer 2003, 44, 4981.
    [61] Chao, H. I. S.; Whalen, J. M. J. Appl. Polym. Sci. 1993, 49, 1537.
    [62] Lee, T. J.; Fang, Y. D.; Yuan, W. G.; Wei, K. M.; Liang, M. Polymer 2007, 48, 734.
    [63] Lin, Y. C.; Feng, H. C.; Yang, M. S.; Yu, H. A.; Huang, C. C.; Liang, M. Polym. Int. 2012, 61, 719.
    [64] Yuan, Z.; van Briesen, J. M. Environ. Eng. Sci. 2006, 23, 533.
    [65] Liu, Q.; Shentu, B.; Gu, C.; Weng, Z. Eur. Polym. J. 2009, 45, 1080.
    [66] Dawson, R. M. C.; Elliott, D. C.; Elliott, H. W.; Jones, K. M. Data for Biochemical Research, Oxford University Press, USA, 1989.
    [67] Guieu, S. J. A.; Lanfredi, A. M. M.; Massera, C.; Pachon, L. D; Gamez, P.; Reedijk, J. Catal. Today 2004, 96, 259.
    [68] Gai, J.; Reibenspies, J. H.; Martell, A. E. Inorg. Chim. Acta 2002, 338, 157.
    [69] Camus, A.; Garozzo, M. S.; Marsich, N.; Mari, M. J. Mol. Catal. A: Chem. 1996, 112, 353.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE