簡易檢索 / 詳目顯示

研究生: 王鎮杰
Wang, Chen-Chieh
論文名稱: 分子動力學模擬應用於聚乙烯之線性黏彈性質預測與非線性行為探討
The Prediction of Linear Viscoelasticity of Polyethylene and the Investigation of Nonlinear Behavior via Molecular Dynamic Simulation
指導教授: 張榮語
Chang, Rong-Yeu
口試委員: 曾世昌
吳建興
鍾文仁
黃世欣
許嘉翔
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 112
中文關鍵詞: 分子動力學模擬奈米薄膜分子流變學蛇行理論非線性黏彈
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用分子動力學(molecular dynamics, MD)模擬、結合Rouse理論和蛇行(reptation)理論來預測線型高分子的線性黏彈性質。利用MD模擬來研究極小時間與空間尺度的行為。由於MD目前於可接受的計算時間內只能模擬分子量較小之高分子。因此我們將嘗試使用分子流變學中的理論將分子量小的MD計算結果,轉化成高分子量的參數,並配合Rouse理論、與蛇行理論來預測高分子量材料於大尺度的黏彈性質,並且加入了雙蛇行(double reptation)理論來描述分子量分佈的效應,理論預測高分子量的聚乙烯結果與實驗值有很好的吻合度。
    本研究也利用MD計算來研究高分子薄膜系統奈米尺度的特殊現象,以簡諧式剪切流場(oscillatory shear)為研究例題,探討薄膜的表面滑動以及非線性黏彈行為,本研究並利用富利葉轉換(Fourier transform)來分析非線性行為、同時利用Lissajous曲線來研究非線性黏彈行為,我們發現奇數項的富利葉級數與MD模擬結果有很好的吻合度。同時利用MD計算分子的形態參數(分子排向性)與勢能變化(包含凡得瓦爾、鍵結拉伸、扭轉及鍵角等能量),來研究微觀分子結構的變化與巨觀黏彈行為的關聯性。同時我們發現薄膜於高剪切頻率時將受到shear wave propagation的影響。經由不同頻率下的模擬發現黏彈性的線性範圍會隨著頻率增加而變小,本研究引入應力分解法解析彈性與黏性對總應力的貢獻,藉此分析我們找出線性範圍隨著頻率改變而變化的原因。


    In this study, we combine molecular dynamics (MD) simulation and molecular theory such as Rouse and reptation theory to develop a method for predicting the viscoealstic properties. Reptation theory can be used to descrie phenomenon of entangled polymer and analyze it quantitatively. However, some material parameters in these models are difficult to obtain. MD simulation is based on atomic level which can simulate material properties with less assumption. But for large systems it is time consuming and inefficiency. Hence, we take advantage of the strong points of the two methods. i.e. we used MD simulation to calculate the material parameters in the reptation model then applied it to the reptation model to predict the viscoelastic properties of material. In this work, double reptation theory was also appled to describe the effect of molecular weight distribution. The prediction of high molecular weight polyethylene are agree with the experimental results by applying double reputation theory
    MD simulation was also used to investigate the viscoelastic properties of short chain PE under oscillatory shear flow. Rheometric simulations of an ultra-thin molecular film are studied and compared with the results of a bulk simulation. Strain amplitude sweep tests at a fixed frequency show that strain thinning (the dynamic modulus monotonically decreases with increasing strain amplitude) exists at extreme strain for both bulk and thin film systems. Fourier analysis is performed to characterize the nonlinear behavior of the viscoelasticity. No even harmonic was found in our study even though wall slip occurs. Furthermore, we show that a Fourier series with odd harmonics can be used to perfectly describe the simulation results by plotting Lissajous loops. Shear wave propagation appears when the frequency is larger than a certain value. Moreover, the molecular orientation and molecular potential energies, including those for bonding potential, intra- and intermolecular van der Waals interactions are plotted against the strain amplitude to examine the changes in the microscopic structures with respect to the macroscopic thermodynamic states.
    In addition, we found that the linear region is decreaseing with the increase of frequency. By stress decomposition the individual contribution of elastic or viscous effect is determined. Therefore, the origin of decrase of linear region could be investigated.

    摘要 I Abstract II 目錄 V 圖目錄 VIII 表目錄 XI 符號表 XII 第一章、緒論 1 1-1研究目的與動機 1 1-2高分子黏彈性簡介 2 1-2-1連續體理論 3 1-2-2分子動力理論 3 1-3分子模擬的簡介 4 1-3-1分子動力學模擬簡介 4 第二章、文獻回顧 6 2-1線型分子流變學文獻回顧 6 2-1-1 Elastic dumbbell model 6 2-1-2 Rouse model 7 2-1-3 Doi-Edwards model 8 2-1-4 Curtiss-Bird model 9 2-1-5 Extend reptation theory 11 2-2簡諧式剪切流場回顧 14 2-3分子動力學模擬文獻回顧 17 2-3-1平衡態分子模擬 17 2-3-2非平衡態分子模擬 19 2-3-3高分子薄膜相關文獻回顧 22 第三章、研究方法 25 3-1分子動力學的基本假設 25 3-2高分子鏈勢能模型 26 3-3運動方程式 28 3-4 邊界條件 30 3-5 流變性質的計算 31 3-6線性黏彈行為 33 3-7非線性黏彈行為 35 3-8 分子流變學與分子動力學模擬之結合 38 3-8-1 軌跡分析與參數計算 39 3-8-2 蛇行模式與黏彈性質預測 42 第四章 結果與討論 48 4-1平衡態模擬與黏彈性質預測 48 4-1-1程式與系統驗証 48 4-1-2分子鏈靜態結構 50 4-1-3分子鏈動態性質 53 4-1-4高分子量系統黏彈性預測 57 4-2非平衡態流變性質 69 4-2-1模擬系統 69 4-2-2系統大小之尺寸效應 71 4-2-3薄膜之滑動與非線性黏彈現象 72 4-2-4非平衡熱力學效應 80 4-2-5分子構形與能量變化 82 4-2-6 剪切波傳遞效應(shear wave propagation) 86 4-2-7 恆容系統與恆壓系統比較 89 4-2-8應力分解 91 4-2-9頻率對非線性的影響 95 第五章 結論 101 參考文獻 103

    [1] H. W. Hu, G. A. Carson, and S. Granick, "Relaxation time of confined liquids under shear," Phys Rev Lett, vol. 66, 2758, 1991.
    [2] H. W. Hu and S. Granick, "Viscoelastic dynamics of confined polymer melts," Science, vol. 258, 1339, 1992.
    [3] S. T. Cui, P. T. Cummings, and H. D. Cochran, "Molecular simulation of the transition from liquidlike to solidlike behavior in complex fluids confined to nanoscale gaps," Journal of Chemical Physics, vol. 114, 7189, 2001.
    [4] A. Jabbarzadeh, P. Harrowell, and R. I. Tanner, "Low friction lubrication between amorphous walls: Unraveling the contributions of surface roughness and in-plane disorder," Journal of Chemical Physics, vol. 125, 034703, 2006.
    [5] P. Tapadia, S. Ravindranath, and S. Q. Wang, "Banding in entangled polymer fluids under oscillatory shearing," Phys Rev Lett, vol. 96, 196001, 2006.
    [6] P. Tapadia and S. Q. Wang, "Direct visualization of continuous simple shear in non-newtonian polymeric fluids," Phys Rev Lett, vol. 96, 016001, 2006.
    [7] X. Li, S. Q. Wang, and X. R. Wang, "Nonlinearity in large amplitude oscillatory shear (laos) of different viscoelastic materials," Journal of Rheology, vol. 53, 1255, 2009.
    [8] S. Granick, Y. X. Zhu, and H. Lee, "Slippery questions about complex fluids flowing past solids," Nature Materials, vol. 2, 221, 2003.
    [9] W. Paul, G. D. Smith, D. Y. Yoon, B. Farago, S. Rathgeber, A. Zirkel, L. Willner, and D. Richter, "Chain motion in an unentangled polyethylene melt: A critical test of the rouse model by molecular dynamics simulations and neutron spin echo spectroscopy," PHYSICAL REVIEW LETTERS, vol. 80, 2346, 1998.
    [10] J. T. Padding and W. J. Briels, "Zero-shear stress relaxation and long time dynamics of a linear polyethylene melt: A test of rouse theory," Journal of Chemical Physics, vol. 114, 8685, 2001.
    [11] V. A. Harmandaris, V. G. Mavrantzas, D. N. Theodorou, M. Kroger, J. Ramirez, H. C. Ottinger, and D. Vlassopoulos, "Crossover from the rouse to the entangled polymer melt regime: Signals from long, detailed atomistic molecular dynamics simulations, supported by rheological experiments," Macromolecules, vol. 36, 1376, 2003.
    [12] R. B. Bird, C. F. Curtiss, R. C. Armstrong, and O. Hassager, Dynamics of polymeric liquids. Vol. 1 : Fluid mechanics, 2nd ed. New York: Wiley, 1987.
    [13] R. G. Larson, The structure and rheology of complex fluids. New York: Oxford University Press, 1999.
    [14] Y. H. Lin, Polymer viscoelasticity : Basics, molecular theories, and experiments. Singapore ; London: World Scientific, 2003.
    [15] M. T. Shaw and W. J. MacKnight, Introduction to polymer viscoelasticity, 3rd ed. ed. Hoboken, N.J.: Wiley-Interscience, 2005.
    [16] J. M. Dealy and R. G. Larson, Structure and rheology of molten polymers : From structure to flow behavior and back again. Munich Cincinnati: Hanser Publishers ;Hanser Gardner Publications, 2006.
    [17] R. B. Bird, C. F. Curtiss, R. C. Armstrong, and O. Hassager, Dynamics of polymeric liquids. Vol. 2 : Kinetic theory, 2nd ed. New York: Wiley, 1987.
    [18] M. Doi and S. F. Edwards, The theory of polymer dynamics. Oxford New York: Clarendon Press ;Oxford University Press, 1988.
    [19] P. E. Rouse, "A theory of the linear viscoelastic properties of dilute solutions of coiling polymers," Journal of Chemical Physics, vol. 21, 1272, 1953.
    [20] M. Doi and S. F. Edwards, "Dynamics of concentrated polymer systems .3. Constitutive equation," Journal of the Chemical Society-Faraday Transactions Ii, vol. 74, 1818, 1978.
    [21] M. Doi and S. F. Edwards, "Dynamics of concentrated polymer systems .2. Molecular-motion under flow," Journal of the Chemical Society-Faraday Transactions Ii, vol. 74, 1802, 1978.
    [22] M. Doi and S. F. Edwards, "Dynamics of concentrated polymer systems .1. Brownian-motion in equilibrium state," Journal of the Chemical Society-Faraday Transactions Ii, vol. 74, 1789, 1978.
    [23] M. Doi and S. F. Edwards, "Dynamics of concentrated polymer systems .4. Rheological properties," Journal of the Chemical Society-Faraday Transactions Ii, vol. 75, 38, 1979.
    [24] C. F. Curtiss and R. B. Bird, "A kinetic-theory for polymer melts .2. The stress tensor and the rheological equation of state," Journal of Chemical Physics, vol. 74, 2026, 1981.
    [25] C. F. Curtiss and R. B. Bird, "A kinetic-theory for polymer melts .1. The equation for the single-link orientational distribution function," Journal of Chemical Physics, vol. 74, 2016, 1981.
    [26] J. M. Haile, Molecular dynamics simulation: Elementary methods: Wiley, 1997.
    [27] M. P. Allen and D. J. Tildesley, Computer simulation of liquids. Oxford England New York: Clarendon Press ;Oxford University Press, 1987.
    [28] C. C. Hua and J. D. Schieber, "Segment connectivity, chain-length breathing, segmental stretch, and constraint release in reptation models. I. Theory and single-step strain predictions," Journal of Chemical Physics, vol. 109, 10018, 1998.
    [29] C. C. Hua, J. D. Schieber, and D. C. Venerus, "Segment connectivity, chain-length breathing, segmental stretch, and constraint release in reptation models ii. Double-step strain predictions," Journal of Chemical Physics, vol. 109, 10028, 1998.
    [30] C. C. Hua, J. D. Schieber, and D. C. Venerus, "Segment connectivity, chain-length breathing, segmental stretch, and constraint release in reptation models iii. Shear flows," Journal of Rheology, vol. 43, 701, 1999.
    [31] C. C. Hua, "Investigations on several empirical rules for entangled polymers based on a self-consistent full-chain reptation theory," Journal of Chemical Physics, vol. 112, 8176, 2000.
    [32] R. J. Sadus, Molecular simulation of fluids : Theory, algorithms, and object-orientation. Amsterdam ; New York: Elsevier, 1999.
    [33] D. Frenkel and B. Smit, Understanding molecular simulation : From algorithms to applications, 2nd ed. ed. San Diego: Academic Press, 2002.
    [34] D. C. Rapaport, The art of molecular dynamics simulation, 2nd ed. ed. Cambridge, UK ; New York, NY: Cambridge University Press, 2004.
    [35] M. Doi, "Explanation for the 3.4 power law of viscosity of polymeric liquids on the basis of the tube model," Journal of Polymer Science Part C-Polymer Letters, vol. 19, 265, 1981.
    [36] Y. H. Lin, "Linear and nonlinear rheological properties of a polystyrene sample of narrow molecular-weight distribution," Journal of Rheology, vol. 28, 1, 1984.
    [37] Y. H. Lin, "A general linear-viscoelastic theory for nearly monodisperse flexible linear polymer melts and concentrated-solutions and comparison of theory and experiment," Macromolecules, vol. 17, 2846, 1984.
    [38] A. Benallal, G. Marin, J. P. Montfort, and C. Derail, "Linear viscoelasticity revisited - the relaxation function of monodisperse polymer melts," Macromolecules, vol. 26, 7229, 1993.
    [39] W. G. Glockle and T. F. Nonnenmacher, "Fractional integral-operators and fox functions in the theory of viscoelasticity," Macromolecules, vol. 24, 6426, 1991.
    [40] G. Ianniruberto and G. Marrucci, "On compatibility of the cox-merz rule with the model of doi and edwards," Journal of Non-Newtonian Fluid Mechanics, vol. 65, 241, 1996.
    [41] D. W. Mead, R. G. Larson, and M. Doi, "A molecular theory for fast flows of entangled polymers," Macromolecules, vol. 31, 7895, 1998.
    [42] G. Marrucci and N. Grizzuti, "Fast flows of concentrated polymers - predictions of the tube model on chain stretching," Gazzetta Chimica Italiana, vol. 118, 179, 1988.
    [43] S. T. Milner and T. C. B. McLeish, "Reptation and contour-length fluctuations in melts of linear polymers," PHYSICAL REVIEW LETTERS, vol. 81, 725, 1998.
    [44] S. T. Milner and T. C. B. McLeish, "Parameter-free theory for stress relaxation in star polymer melts," Macromolecules, vol. 30, 2159, 1997.
    [45] Y. H. Lin, "Whole range of chain dynamics in entangled polystyrene melts revealed from creep compliance: Thermorheological complexity between glassy-relaxation region and rubber-to-fluid region. 1," Journal of Physical Chemistry B, vol. 109, 17654, 2005.
    [46] C. C. Hua, J. D. Schieber, and N. C. Andrews, "A constant-contour-length reptation model without independent alignment or consistent averaging approximations for chain retraction," Rheologica Acta, vol. 36, 544, 1997.
    [47] J. M. Dealy and K. F. Wissbrun, Melt rheology and its role in plastics processing : Theory and applications. New York: Van Nostrand Reinhold, 1990.
    [48] C. W. Macosko, Rheology : Principles, measurements, and applications. New York: VCH, 1994.
    [49] A. J. Giacomin and J. M. Dealy, "Using large-amplitude oscillatory shear," in Rheological measurement, A. A. Collyer and D. W. Clegg, Eds., 2nd ed London ; New York: Springer, 1998, p. 327.
    [50] A. A. Collyer, Techniques in rheological measurement. London: Chapman & Hall, 1993.
    [51] S. Tariq, A. J. Giacomin, and S. Gunasekaran, "Nonlinear viscoelasticity of cheese," Biorheology, vol. 35, 171, 1998.
    [52] J. G. Oakley, A. J. Giacomin, and J. A. Yosick, "Molecular origins of nonlinear viscoelasticity," Mikrochimica Acta, vol. 130, 1, 1998.
    [53] S. G. Hatzikiriakos and J. M. Dealy, "Wall slip of molten high density polyethylene .1. Sliding plate rheometer studies," Journal of Rheology, vol. 35, 497, 1991.
    [54] A. J. Giacomin and J. G. Oakley, "Obtaining fourier series graphically from large amplitude oscillatory shear loops," Rheologica Acta, vol. 32, 328, 1993.
    [55] M. Wilhelm, D. Maring, and H. W. Spiess, "Fourier-transform rheology," Rheologica Acta, vol. 37, 399, 1998.
    [56] M. Wilhelm, P. Reinheimer, and M. Ortseifer, "High sensitivity fourier-transform rheology," Rheologica Acta, vol. 38, 349, 1999.
    [57] M. Wilhelm, P. Reinheimer, M. Ortseifer, T. Neidhofer, and H. W. Spiess, "The crossover between linear and non-linear mechanical behaviour in polymer solutions as detected by fourier-transform rheology," Rheologica Acta, vol. 39, 241, 2000.
    [58] K. Hyun, S. H. Kim, K. H. Ahn, and S. J. Lee, "Large amplitude oscillatory shear as a way to classify the complex fluids," Journal of Non-Newtonian Fluid Mechanics, vol. 107, 51, 2002.
    [59] M. Sugimoto, Y. Suzuki, K. Hyun, K. H. Ahn, T. Ushioda, A. Nishioka, T. Taniguchi, and K. Koyama, "Melt rheology of long-chain-branched polypropylenes," Rheologica Acta, vol. 46, 33, 2006.
    [60] R. H. Ewoldt, C. Clasen, A. E. Hosoi, and G. H. McKinley, "Rheological fingerprinting of gastropod pedal mucus and synthetic complex fluids for biomimicking adhesive locomotion," Soft Matter, vol. 3, 634, 2007.
    [61] B. M. Erwin, D. Vlassopoulos, and M. Cloitre, "Rheological fingerprinting of an aging soft colloidal glass," Journal of Rheology, vol. 54, 915, 2010.
    [62] K. Hyun, M. Wilhelm, C. O. Klein, K. S. Cho, J. G. Nam, K. H. Ahn, S. J. Lee, R. H. Ewoldt, and G. H. McKinley, "A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (laos)," Progress in Polymer Science, vol. 36, 1697, 2011.
    [63] M. D. Graham, "Wall slip and the nonlinear dynamics of large amplitude oscillatory shear flows," Journal of Rheology, vol. 39, 697, 1995.
    [64] K. Atalik and R. Keunings, "On the occurrence of even harmonics in the shear stress response of viscoelastic fluids in large amplitude oscillatory shear," Journal of Non-Newtonian Fluid Mechanics, vol. 122, 107, 2004.
    [65] D. W. Adrian and A. J. Giacomin, "The quasi-periodic nature of a polyurethane melt in sscillatory shear," Journal of Rheology, vol. 36, 1227, 1992.
    [66] D. W. Adrian and A. J. Giacomin, "The transition to quasi-periodicity for molten plastics in large-amplitude oscillatory shear," Journal of Engineering Materials and Technology-Transactions of the Asme, vol. 116, 446, 1994.
    [67] M. J. Reimers and J. M. Dealy, "Sliding plate rheometer studies of concentrated polystyrene solutions: Large amplitude oscillatory shear of a very high molecular weight polymer in diethyl phthalate," Journal of Rheology, vol. 40, 167, 1996.
    [68] B. Debbaut and H. Burhin, "Large amplitude oscillatory shear and fourier-transform rheology for a high-density polyethylene: Experiments and numerical simulation," Journal of Rheology, vol. 46, 1155, 2002.
    [69] K. S. Cho, K. Hyun, K. H. Ahn, and S. J. Lee, "A geometrical interpretation of large amplitude oscillatory shear response," Journal of Rheology, vol. 49, 747, 2005.
    [70] R. H. Ewoldt, A. E. Hosoi, and G. H. McKinley, "New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear," Journal of Rheology, vol. 52, 1427, 2008.
    [71] S. T. Cui, P. T. Cummings, and H. D. Cochran, "The calculation of viscosity of liquid n-decane and n-hexadecane by the green-kubo method," Molecular Physics, vol. 93, 117, 1998.
    [72] A. V. Lyulin, N. K. Balabaev, and M. A. J. Michels, "Molecular-weight and cooling-rate dependence of simulated tg for amorphous polystyrene," Macromolecules, vol. 36, 8574, 2003.
    [73] S. K. K. Suchira Sen, and Pawel Keblinski, "Viscoelastic properties of polymer melts from equilibrium molecular dynamics simulations," Macromolecules, vol. 38, 650, 2005.
    [74] A. Berker, S. Chynoweth, U. C. Klomp, and Y. Michopoulos, "Non-equilibrium molecular dynamics (nemd) simulations and the rheological properties of liquid n-hexadecane," Journal of the Chemical Society-Faraday Transactions, vol. 88, 1719, 1992.
    [75] J. D. Moore, S. T. Cui, H. D. Cochran, and P. T. Cummings, "A molecular dynamics study of a short-chain polyethylene melt. I. Steady-state shear," Journal of Non-Newtonian Fluid Mechanics, vol. 93, 83, 2000.
    [76] J. D. Moore, S. T. Cui, H. D. Cochran, and P. T. Cummings, "A molecular dynamics study of a short-chain polyethylene melt. Ii. Transient response upon onset of shear," Journal of Non-Newtonian Fluid Mechanics, vol. 93, 101, 2000.
    [77] T. Aoyagi and M. Doi, "Molecular dynamics simulation of entangled polymers in shear flow," Computational and Theoretical Polymer Science, vol. 10, 317, 2000.
    [78] M. Kroger and S. Hess, "Rheological evidence for a dynamical crossover in polymer melts via nonequilibrium molecular dynamics," PHYSICAL REVIEW LETTERS, vol. 85, 1128, 2000.
    [79] S. Bair, C. McCabe, and P. T. Cummings, "Comparison of nonequilibrium molecular dynamics with experimental measurements in the nonlinear shear-thinning regime," PHYSICAL REVIEW LETTERS, vol. 88, 058302, 2002.
    [80] J. G. H. Cifre, S. Hess, and M. Kroger, "Linear viscoelastic behavior of unentangled polymer melts via non-equilibrium molecular dynamics," Macromolecular Theory and Simulations, vol. 13, 748, 2004.
    [81] H. C. Tseng, J. S. Wu, and R. Y. Chang, "Shear thinning and shear dilatancy of liquid n-hexadecane via equilibrium and nonequilibrium molecular dynamics simulations: Temperature, pressure, and density effects," Journal of Chemical Physics, vol. 129, 014502, 2008.
    [82] H. C. Tseng, J. S. Wu, and R. Y. Chang, "Master curves and radial distribution functions for shear dilatancy of liquid n-hexadecane via nonequilibrium molecular dynamics simulations," Journal of Chemical Physics, vol. 130, 164515, 2009.
    [83] H. C. Tseng, J. S. Wu, and R. Y. Chang, "Linear viscoelasticity and thermorheological simplicity of n-hexadecane fluids under oscillatory shear via non-equilibrium molecular dynamics simulations," Physical Chemistry Chemical Physics, vol. 12, 4051, 2010.
    [84] A. Jabbarzadeh, J. D. Atkinson, and R. I. Tanner, "Nanorheology of molecularly thin films of n-hexadecane in couette shear flow by molecular dynamics simulation," Journal of Non-Newtonian Fluid Mechanics, vol. 77, 53, 1998.
    [85] A. Jabbarzadeh, J. D. Atkinson, and R. I. Tanner, "Wall slip in the molecular dynamics simulation of thin films of hexadecane," Journal of Chemical Physics, vol. 110, 2612, 1999.
    [86] A. Jabbarzadeh, J. D. Atkinson, and R. I. Tanner, "Effect of the wall roughness on slip and rheological properties of hexadecane in molecular dynamics simulation of couette shear flow between two sinusoidal walls," Phys Rev E, vol. 61, 690, 2000.
    [87] A. Koike and M. Yoneya, "Chain length effects on frictional behavior of confined ultrathin films of linear alkanes under shear," The Journal of Physical Chemistry B, vol. 102, 3669, 1998.
    [88] K. Yoshimoto, T. S. Jain, P. F. Nealey, and J. J. de Pablo, "Local dynamic mechanical properties in model free-standing polymer thin films," Journal of Chemical Physics, vol. 122, 144712, 2005.
    [89] K. T. Hiroshi Morita, Tisato Kajiyama, Toshio Nishi, and Masao Doi, "Study of the glass transition temperature of polymer surface by coarse-grained molecular dynamics simulation," Macromolecules, vol. 39, 6233, 2006.
    [90] R. Edberg, G. P. Morriss, and D. J. Evans, "Rheology of n-alkanes by nonequilibrium molecular dynamics," Journal of Chemical Physics, vol. 86, 4555, 1987.
    [91] D. J. Evans and G. P. Morriss, Statistical mechanics of nonequilibrium liquids, 2nd ed. ed. Cambridge: Cambridge University Press, 2008.
    [92] A. W. Lees and S. F. Edwards, "Computer study of transport processes under extreme conditions," Journal of Physics Part C Solid State Physics, vol. 5, 1921, 1972.
    [93] A. J. Giacomin and R. S. Jeyaseelan, "A constitutive theory for polyolefins in large amplitude oscillatory shear," Polymer Engineering and Science, vol. 35, 768, 1995.
    [94] S. Kallus, N. Willenbacher, S. Kirsch, D. Distler, T. Neidhofer, M. Wilhelm, and H. W. Spiess, "Characterization of polymer dispersions by fourier transform rheology," Rheologica Acta, vol. 40, 552, 2001.
    [95] G. Fleury, G. Schlatter, and R. Muller, "Non linear rheology for long chain branching characterization, comparison of two methodologies: Fourier transform rheology and relaxation.," Rheologica Acta, vol. 44, 174, 2004.
    [96] M. Wilhelm, "Fourier-transform rheology," Macromolecular Materials and Engineering, vol. 287, 83, 2002.
    [97] T. Neidhofer, M. Wilhelm, and B. Debbaut, "Fourier-transform rheology experiments and finite-element simulations on linear polystyrene solutions," Journal of Rheology, vol. 47, 1351, 2003.
    [98] G. Schlatter, G. Fleury, and R. Muller, "Fourier transform rheology of branched polyethylene: Experiments and models for assessing the macromolecular architecture," Macromolecules, vol. 38, 6492, 2005.
    [99] O. Byutner and G. D. Smith, "Prediction of the linear viscoelastic shear modulus of an entangled polybutadiene melt from simulation and theory," Macromolecules, vol. 34, 134, 2001.
    [100] L. J. Fetters, D. J. Lohse, D. Richter, T. A. Witten, and A. Zirkel, "Connection between polymer molecular-weight, density, chain dimensions, and melt viscoelastic properties," Macromolecules, vol. 27, 4639, 1994.
    [101] D. Lohse, "The influence of chemical structure on polyolefin melt rheology and miscibility," Journal of Macromolecular Science: Polymer Reviews, vol. 45, 289, 2005.
    [102] Y. H. Lin, "Number of entanglement strands per cubed tube diameter, a fundamental aspect of topological universality in polymer viscoelasticity," Macromolecules, vol. 20, 3080, 1987.
    [103] K. Foteinopoulou, N. C. Karayiannis, M. Laso, and M. Kroger, "Structure, dimensions, and entanglement statistics of long linear polyethylene chains," Journal of Physical Chemistry B, vol. 113, 442, 2009.
    [104] M. Mondello, G. S. Grest, E. B. Webb, and P. Peczak, "Dynamics of n-alkanes: Comparison to rouse model," Journal of Chemical Physics, vol. 109, 798, 1998.
    [105] J. van Meerveld, "A method to extract the monomer friction coefficient from the linear viscoelastic behavior of linear, entangled polymer melts," Rheologica Acta, vol. 43, 615, 2004.
    [106] J. Ramos, J. F. Vega, D. N. Theodorou, and J. Martinez-Salazar, "Entanglement relaxation time in polyethylene: Simulation versus experimental data," Macromolecules, vol. 41, 2959, 2008.
    [107] J. F. Vega, S. Rastogi, G. W. M. Peters, and H. E. H. Meijer, "Rheology and reptation of linear polymers. Ultrahigh molecular weight chain dynamics in the melt," Journal of Rheology, vol. 48, 663, 2004.
    [108] Y. Masubuchi, G. Ianniruberto, F. Greco, and G. Marrucci, "Quantitative comparison of primitive chain network simulations with literature data of linear viscoelasticity for polymer melts," Journal of Non-Newtonian Fluid Mechanics, vol. 149, 87, 2008.
    [109] Y. Masubuchi, G. Ianniruberto, F. Greco, and G. Marrucci, "Entanglement molecular weight and frequency response of sliplink networks," Journal of Chemical Physics, vol. 119, 6925, 2003.
    [110] C. Tsenoglou, "Molecular-weight polydispersity effects on the viscoelasticity of entangled linear-polymers," Macromolecules, vol. 24, 1762, 1991.
    [111] J. Descloizeaux, "Double reptation vs simple reptation in polymer melts," EUROPHYSICS LETTERS, vol. 5, 437, 1988.
    [112] D. W. Mead, "Component predictions and the relaxation spectrum of the double reptation mixing rule for polydisperse linear flexible polymers," Journal of Rheology, vol. 40, 633, 1996.
    [113] Y. H. Lin, "Comparison of experiment and the proposed general linear viscoelastic theory .2. Stress-relaxation line-shape analysis," Macromolecules, vol. 19, 159, 1986.
    [114] P. Padilla and S. Toxvaerd, "Fluid alkanes in confined geometries," Journal of Chemical Physics, vol. 101, 1490, 1994.
    [115] R. Khare, J. de Pablo, and A. Yethiraj, "Molecular simulation and continuum mechanics investigation of viscoelastic properties of fluids confined to molecularly thin films," Journal of Chemical Physics, vol. 114, 7593, 2001.
    [116] P. J. Daivis, D. J. Evans, and G. P. Morriss, "Computer simulation study of the comparative rheology of branched and linear alkanes," Journal of Chemical Physics, vol. 97, 616, 1992.
    [117] L. M. Hood, D. J. Evans, and H. J. M. Hanley, "Properties of a soft-sphere liquid from non-newtonian molecular dynamics," Journal of Statistical Physics, vol. 57, 729, 1989.
    [118] P. J. Daivis, M. L. Matin, and B. D. Todd, "Nonlinear shear and elongational rheology of model polymer melts by non-equilibrium molecular dynamics," Journal of Non-Newtonian Fluid Mechanics, vol. 111, 1, 2003.
    [119] S. Chynoweth and Y. Michopoulos, "An improved potential model for n-hexadecane molecular-dynamics simulations under extreme conditions," Molecular Physics, vol. 81, 133, 1994.
    [120] H. C. Tseng, J. S. Wu, and R. Y. Chang, "Material functions of liquid n-hexadecane under steady shear via nonequilibrium molecular dynamics simulations: Temperature, pressure, and density effects," Journal of Chemical Physics, vol. 130, 084904, 2009.
    [121] H. C. Tseng, R. Y. Chang, and J. S. Wu, "Molecular structural property and potential energy dependence on nonequilibrium-thermodynamic state point of liquid n-hexadecane under shear," Journal of Chemical Physics, vol. 134, 044511, 2011.
    [122] C. C. Wang and R. Y. Chang, "Nonlinearity and slip behavior of n-hexadecane in large amplitude oscillatory shear flow via nonequilibrium molecular dynamic simulation," Journal of Chemical Physics, vol. 136, 104904, 2012.
    [123] T. T. Tee and J. M. Dealy, "Nonlinear viscoelasticity of polymer melts," Transactions of the Society of Rheology, vol. 19, 595, 1975.
    [124] J. M. Dealy and W. K. W. Tsang, "Structural time dependency in the rheological behavior of molten polymers," Journal of Applied Polymer Science, vol. 26, 1149, 1981.
    [125] Y. H. Lin, "Glass transition-related thermorheological complexity in polystyrene melts," Journal of Physics-Condensed Matter, vol. 19, 466101 2007.
    [126] F. T. Adler, W. M. Sawyer, and J. D. Ferry, "Propagation of transverse waves in viscoelastic media," Journal of Applied Physics, vol. 20, 1036, 1949.
    [127] G. B. Thurston and J. L. Schrag, "Shear wave propagation in birefringent fiscoelastic meduim," Journal of Applied Physics, vol. 35, 144, 1964.
    [128] J. L. Schrag, J. F. Guess, and G. B. Thurston, "Shear-wave interference observed by optical birefringenceinduced in a viscoelastic liquid," Journal of Applied Physics, vol. 36, 1996, 1965.
    [129] J. L. Schrag, "Deviation of velocity-gradient profiles from gap loading and surface loading limits in dynamic simple shear experiments," Transactions of the Society of Rheology, vol. 21, 399, 1977.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE