簡易檢索 / 詳目顯示

研究生: 翁銘孝
論文名稱: 奈米碳管-熱固性高分子複合材之電壓調控相轉變:從剛性材料至阻尼材料
Controllable Phase Transition of Carbon Nanotubes/Thermo-setting Polymer by Voltage Modulation: From Rigid Materials to Absorbers
指導教授: 徐文光
口試委員: 魏碧玉
李紫原
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 70
中文關鍵詞: 奈米碳管複合材料制震環氧樹脂
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用熱的方式調控熱固性高分子之相變化(玻璃轉換),使其切換力學材料至阻尼材料兩種極端的材料特性。加熱的來源選擇精準且方便外在調控的歐姆熱,可由加入奈米碳管改質熱固性高分子使其具有導電性並在施加電壓後產生熱能。實驗結果顯示,所使用之奈米碳管/環氧樹脂複合材料在室溫呈現約30%的能量吸收比,在加溫至80oC後可達到約90%之能量吸收比,並具均勻性與可逆性。主要可應用在突發振動發生時之結構制震系統設計,以及改進現有相關制震裝置(例如:制震壁)的效能。最後在其他機械性質如硬度、楊氏模數對溫度變化的量測中,探討相變化對機械性質的影響,並決定了此元件的可能應用工作溫度範圍。


    A rigidity controllable material is designed by applying the thermo-induced phase transition (glass transition) of a thermo-setting polymer. This transition of a conductive MWNT/epoxy composite took place due to associated ohmic heat once a voltage was applied. Energy absorption percentage of an external impact changes from about 30% to 90% at room temperature and 80oC respectively, revealing that the originally rigid matrix is able to turn into a damping material rapidly when needed. Other mechanical properties such as hardness, Young’s modulus were also measured with varied temperature to understand the mechanism.

    摘要 ..........................................................I Abstract ....................................................II 誌謝 ........................................................III 目錄 .........................................................IV 圖目錄........................................................VI 第一章 實驗動機與目的 1 第二章 文獻回顧 2 2-1奈米碳管的結構與特性 2 2-1-1奈米碳管的結構 2 2-1-2奈米碳管的基本電性 4 2-1-3奈米碳管的機械性質 6 2-2 奈米碳管/高分子複合材料 7 2-2-1奈米碳管與其複合材料的機械性質 7 2-2-2奈米碳管與其複合材料的電性 10 2-2-3以奈米碳管為加熱源之應用 12 2-2-4奈米碳管複合材料的挑戰 13 2-3高分子及環氧樹脂簡介 15 2-3-1高分子 15 2-3-2環氧樹脂(Epoxy) 16 2-4 硬度量測簡介 18 2-5 玻璃轉換溫度量測 20 2-5-1 玻璃轉換溫度(Tg) 20 2-5-2 熱分析原理 20 2-5-3 環氧樹脂之玻璃轉換溫度量測 22 2-5-4 玻璃轉換溫度與阻尼(damping)之關係 23 第三章 實驗步驟 26 3-1實驗藥品與儀器 26 3-2實驗流程 27 3-2-1試片製作 27 3-2-2實驗量測流程 29 3-2-3衝擊試驗 30 3-2-4硬度量測 36 3-2-5楊氏模數量測 38 第四章 結果與討論 41 4-1 SEM與導電率量測 41 4-2 熱分析 45 4-3 機械性質量測─衝擊試驗 47 4-3-1 加熱板加熱 47 4-3-2 歐姆加熱 49 4-3-3 結論 50 4-4 機械性質量測─硬度 54 4-5 機械性質量測─楊氏模數量測 56 4-6 加熱速率量測 58 第五章 結論 64 參考文獻 .................................................65

    [1] 李惠菁, “多壁奈米碳管/聚乙烯醇高分子複合材料合成與物性分析研究”, 國立清華大學材料科學與工程研究所碩士論文, (2008)。
    [2] 陳亞群, “多壁奈米碳管填充之導電高分子材料電磁波屏蔽效能研究”, 國立清華大學材料科學與工程研究所碩士論文, (2007)。
    [3] 張雅筑, “常壓下以電暈方式製備奈米碳管或奈米結構”, 國立清華大學材料科學與工程研究所碩士論文, (2007)。
    [4] E. T. Thostenson, Z. Ten, T. W. Chou, Compos. Sci. Techno.61, 1899 (2001).
    [5] Rupesh Khare, Suryasarathi Bose Journal of Minerals & Materials Characterization & Engineering 4(1), 31-46 (2005).
    [6] Hassanien,a., et al., Applied Physics Letters 75(18), 2755-2757 (1999).
    [7] Lambin, P., Comptes Rendus Physique 4(9), 1009-1019 (2003).
    [8] Lourie, O., D.M.Cox, and H.D.Wanger, Physical Review Letters 81(8), 1638-1641 (1998).
    [9] Yu, M.F., T.Kowalewski, and R.S. Ruoff, Physical Review Letters 86(1), 87-90 (2001).
    [10] Yu, M.F., et al., Science 287(5453), 637-640 (2000).
    [11] Treacy, M.M.J., T.W.Ebbesen, and J.M.Gibson. Nature 381(6584), 678-680 (1996).
    [12] Meyyappan, M., ed. Carbon Nanotubes: Science and Applications. Boca Raton: CRC Press (2005).
    [13] O’Connell, M. ed. Carbon Nanotubes: Properties and Applications. Boca Raton: Taylor & Francis (2006).
    [14] J.K.W.Sandler, J.E.Kirk, I.A.Kinloch, M.S.P.Sha, A.H.Windle, Polymer 44, 5893 (2003).
    [15] World Technology Evaluation Center, Inc. International Assessment of Research and Development of Carbon Nanotube Manufacturing and Applications. Retrieved July 9, 2007, from http://www.wtec.org/cnm/CNM_final_report.pdf
    [16] “Deformation and fracture mechanics of engineering materials”, Fourth Edition, Richard W. Hertzberg, p33~p38 (1996)
    [17] K. T. Lau, C. Gu, D. Hui, Compos. Part. B.37, 425 (2005).
    [18] J. N. Coleman, W. J. Blau, A. B. Dalton, E. Munoz, S. Collins, B. G. Kim, J. Razai, M. Selvidge, G. Vieiro, R. H. Baughman, Appl. Phys. Lett.82, 1682 (2003).
    [19] A. Allaoui, S. Bai, H. M. Cheng, J. B. Bai, Comps. Scien. Tech.62, 1993 (2002).
    [20] C. Wei, Appl. Phys. Lett.88, 093108 (2006).
    [21] P. M. Ajayan, L. S. Schadler, C. Giannaris, A. Rubio, Adv. Mater.10, 750 (2000).
    [22] M. M. J. Treacy, T. W. Ebbesen, J. M. Gibson, Nature 381, 678 (1996).
    [23] H. Ye, H. Lam, N. Titchenal, Y. Gogotsi, F. Ko, Appl. Phys. Lett.85, 1775 (2004).
    [24] H. D. Wanger, O. Lourie, Y. Feldman, R. Tenne, Appl. Phys. Lett.72, 188 (1997).
    [25] D. Qian. E. C. Dickey, R. Andrews, T. Rantell, Appl. Phys. Lett.76, 2868 (2000).
    [26] M. Cadek, J. N. Coleman, V. Barron, K. Hedickle, W. J. Blau, Appl. Phys. Lett.81, 5123 (2002).
    [27] L. S. Schadler, S. C. Giannaris, and P. M. Ajayan, Appl. Phys. Lett.73, 3842–3844 (1998).
    [28] J. Fournier, G. Boiteux, G. Seytre, G. Marichy, Synth. Met.84, 839 (1997).
    [29] J. N. Coleman, S. Curran, A. B Dalton, A. P . Davey, B. McCarthy, W. Blau, R. C. Barklie, Phys. Rew. B.58, 7492 (1998).
    [30] S. P. Li, Y. J. Qin, J. H. Shi, Z. X. Guo, Y. F. Li, D. B. Zhu, Chem. Mater.17, 130 (2004).
    [31] U. D. Weglikowska, M. Kaempgen, B. Hornbostel, V. Skakalova, J. P. Wang, J. D. Liang, S. Roth, Phys. Stat. Sol.13, 3440 (2006).
    [32] J. T. Wescott, P. Kung, A. Maiti, App. Phys. Lett.90, 033116 (2007).
    [33] E. Kymakis, G. A. J. Amaratunga, J. Appl. Phys.99, 084302 (2006).
    [34] B. E. Kilbride, J. N. Coleman, J. Fraysse, P. Fournet, M. Cadek, A. Drury, S. Hutzler, S. Roth, W. J. Blau, J. Appl. Phys.92, 4024 (2002).
    [35] B. R. Sankapal, K. Setyowati, J. Chen, Appl. Phys. Lett.91, 173103 (2007).
    [36] Fancheng Meng, Xiaohua Zhang, Geng Xu, Zhenzhong Yong, Hongyuan Chen, Minghai Chen, Qingwen Li, and Yuntian Zhu, ACS Appl. Mater. Interfaces 3, 658–661 (2011).
    [37] Liu, P.; Liu, L.; Wei, Y.; Liu, K.; Chen, Z.; Jiang, K.; Li, Q.; Fan, S. Adv. Mater.21, 3563–3566 (2009).
    [38] Emily Pfautsch, Challenges in Commercializing Carbon Nanotube Composites, WISE Intern University of Missouri-Columbia (2007).
    [39] “高分子材料”, 張文能 編著。
    [40] Smith Hashemi, Foundation of Materials Science and Engineering, 4th edition.
    [41] “機械材料實驗” 第三版, 陳長有,許禎祥,許振聲,陳伯宜,編著。
    [42] Richard A. Swalin, Thermodynamics of solids, 2nd Edition.
    [43] “材料科學叢書二 材料分析 Materials Analysis”, 汪建民 主編, 中國材料科學學會, 第二十章 (1998)。
    [44] 第七章 熱分析,劉銘璋 林岱瑋 王漢松 張秋玲,台灣大學化學系。www.ch.ntu.edu.tw/~rsliu/solidchem/Report/Chapter7_report.pdf
    [45] Arlon, Application Notes
    [46] Thermal analysis application note ,W.J. Sichina. PerkinElmer instruments.
    [47] DoITPoMS-TLP Library, The Glass Transition in Polymers , University of CAMBRIDGE. http://www.doitpoms.ac.uk/tlplib/glass-transition/measurement.php
    [48] Yu-Hsien Lin, Yao-Cheng Lai, Chieh-Lien Lu and Wen-Kuang Hsu, J. Mater. Chem. 21, 12485 (2011).
    [49] Operation manual ,GS series, Teclock.
    [50] Lijie Ci, JinBo Bai, Composites Science and Technology 66, 599–603 (2006).
    [51] A. Allaouia, S. Baia, H.M. Chengb, J.B. Baia, Composites Science and Technology 62, 1993-1998 (2002).
    [52] Jianfeng Shen, Weishi Huang, Liping Wu, Yizhe Hu, Mingxin Ye , Composites: Part A, 38, 1331–1336 (2007).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE