簡易檢索 / 詳目顯示

研究生: 張豐堂
CHANG FENG-TANG
論文名稱: 次世代面板廠揮發性有機氣體淨化設備的特性研究
Study on VOCs Purifying Concentrator for Next- Generation TFT-LCD Fab
指導教授: 白寶實
Bau-Shei Pei
白曛綾
Hsunling Bai
口試委員:
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 217
中文關鍵詞: 揮發性有機物吸附脫附沸石轉輪流體化床活性碳溫變式吸附床濃縮器
外文關鍵詞: VOC, adsorption, desorption, zeolite rotor, fluidize bed, activated carbon, thermal swing adsorber, concentrator
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 環保署即將公告『光電製品製造業空氣污染管制及排放標準』,因此對於光電業揮發性有機氣體的淨化排放管制將趨嚴謹,尤其是大尺寸面板的次世代光電業液晶顯示器製造廠。目前在光電業液晶顯示器製造廠最為普遍常用之揮發性有機氣體淨化設備為溫變式吸脫附系統--『沸石吸附劑型蜂巢狀平行通道吸附轉輪』及『真球狀活性碳吸附劑流體化床』,然而,對於這類溫變式吸脫附系統的研究與文獻探討非常匱乏。
    本研究以次世代光電業彩色薄膜液晶顯示器基板製造製程排放之揮發性有機氣體作為主要的研究重點,並進而對此二種淨化設備的特性加以研究分析及其影響因素加以研討,藉此建立相關之經驗資料,俾利相關人員參考。主要有機物成份為異丙醇(IPA)、丙酮(Acetone)、單甲基醚丙二醇(PGME)、單甲基醚丙二醇乙酸酯(PGMEA)、環己酮(Cyclohexanone)、HMDS等矽化物與全溶於水之高沸點去光阻劑(Stripper;剝離液)成份-- 乙醇胺(MEA)、二甲基亞堸(DMSO)及二乙醇單丁醚(BDG)等。
    由研究結果得知,在沸石轉輪方面:疏水性沸石轉輪對於被吸脫附VOCs的親合力(Affinity)的順序是PGMEA ≧ PGME >> IPA > Acetone,此順序又與VOCs的沸點高低及極性大小相穩合,此乃是競爭性吸附(Competitive adsorption)與吸附替代(Adsorption replacement)所致。同時研究中得知沸石轉輪並不符合單層吸附的Langmuir等溫吸附方程式,但符合D-A等溫吸附方程式及Freundlich等溫吸附方程式,且屬於Type I 的有利等溫吸附曲線(Favorable isotherm)。在適當的將通過沸石轉輪的線速度下降、轉輪加厚及提高脫附熱容量等,即可輕易的使沸石轉輪去除效率持續維持90%以上並符合即將公告的法規要求。
    在活性碳流體化床方面,研究中發現在含有IPA或PGME之GBAC,當脫附溫度加熱超過250℃時會熱分解反應出Propene,超過350℃時其轉化率甚至分別可高達90%及50%,Propene最後將會累積而生成非定型碳並堵塞沸石的微孔洞;同時一些聚合物如MEA、Styrene或環己酮等將會因持續的吸脫附之溫變下而產生聚合也堵塞沸石的孔洞,加速GBAC的劣化,縮短使用壽命;另外環己酮極易於GBAC表面產生觸媒氧化放熱反應,因此,若應用活性碳流體化床的話必須先行預處理這些有害於活性碳的物質,方可進入流體化床內進行淨化處理。


    The Environmental Protection Administration of Taiwan will soon enforce the ”Opto-Electronic Manufacturers□ Air Pollution Control and Emission Standard”. The VOCs emission quantity is thus expected to be controlled with special focuses on the next generation of TFT-LCD manufacturers. One of the most popular VOCs treatment equipments for the next generation of TFT-LCD manufacture fab is the thermal swing adsorber includes honeycomb zeolite rotor with thermal oxidizer and granular bean activated carbon (GBAC)fluidized bed with condenser unit. However limited information is available on these thermal swing absorbers in the literature.
    This study intends to provide experimental data and discuss the performance of the thermal swing adsorbers of honeycomb zeolite rotor and granular bean activated carbon fluidized bed for the VOCs exhaust laden air that simulated the emission characteristics of an opto-electronic manufacturer□s fab. The major VOCs compounds are IPA、Acetone、PGME、 PGMEA 、HMDS、 Cyclohexanone and Strippers in the VOCs laden exhaust air.
    The results of honeycomb zeolite rotor portion showed that the affinity of the high boiling point VOCs such as PGME and PGMEA on the zeolite rotor is much larger than that of the low boiling point VOCs such as IPA and acetone, it followed the order of PGMEA ≧ PGME>> IPA> acetone, that is caused by competitive adsorption and adsorption replacement effect. And the adsorption isotherm of zeolite rotor can be represented by D-A and Freundlich isotherms, but not Langmuir isotherm. Under proper operation conditions of reducing the superficial velocity and the concentrate ratio, and increasing the desorption temperature or the thickness of the rotor, the THC removal efficiency can be easy and well above 90% and thus meet the promulgating regulation.
    And the results of granular bean activated carbon fluidized bed portion showed that IPA and PGME will pyrolysis to propene when desrob temperature higher than 250oC,the convert rate will be above 90% of IPA and 50% of PGME,finally this propene will carbonize to amorphous carbon and plug in the micro pores after repetitious thermal swing ; some polymer compounds as MEA 、styrene and cyclohexanone result polymerization when repetitious thermal swing on the GBAC, these compounds remain in the GBAC pores and reduces the adsorption capacity, and cyclohexanone can easily oxidization on the surface of GBAC, hence fluidized bed system need the pre-treatment for these harmful compounds pre-treating before entrance fluidized bed.

    目 錄 中文摘要 i 英文摘要 iii 誌謝 vi 目錄 vii 表目錄 xi 圖目錄 xiii 一、 前言 1 二、 光電業揮發性有機物特徵 4 2.1 次世代光電業製程概況 4 2.2 次世代光電業製程VOCs排放特性 9 2.3光電業VOCs排放相關法規 17 三、 理論背景與文獻回顧 20 3.1 沸石吸附轉輪及活性碳流體化床原理 20 3.1.1 蜂巢狀平行通道吸附轉輪原理 20 3.1.2 活性碳流體化床原理 24 3.1.3 吸附原理 27 3.1.4等溫吸附方程式 34 3.1.5吸附貫穿曲線 (Breakthrough curve) 49 3.1.6 沸石吸附劑之特性 51 3.1.6-1沸石結構 53 3.1.6-2 沸石特性與吸附選擇性 57 3.1.7活性碳吸附劑之特性 58 3.1.7-1 活性碳種類 60 3.1.7-2 活性碳選擇 62 3.1.8 吸附劑特性對吸附之影響 64 3.2吸附理論 65 3.2.1質傳理論 65 3.2.2 吸附機制 66 3.3空氣性質 68 3.4 文獻回顧 69 四、 沸石型蜂巢狀吸附轉輪 72 4.1檢測分析儀器 72 4.1.1比表面積與平均孔徑測定 72 4.1.2 X光繞射儀 72 4.1.3表面觀察及元素分析 73 4.1.4氣相層析質譜分析(GC-MASS) 73 4.1.5 總碳氫線上濃度偵測儀 73 4.1.6 VOCs濃度檢量線製備 74 4.1.7 熱重量分析(TGA) 75 4.2實驗裝置 75 4.2.1 沸石轉輪之製作程序 75 4.2.2 轉輪靜態測試裝置圖及測定方法 79 4.2.2 轉輪靜態測試裝置圖及測定方法 80 4.3實驗步驟 85 4.4 結果與討論 86 4.4.1沸石轉輪單體特性分析 86 4.4.2沸石轉輪樣品靜態吸附測試 93 4.4.3 多溶劑(IPA+PGMEA)之競爭性吸附 110 4.4.4小型模廠沸石轉輪動態吸脫附測試 114 4.4.5 沸石轉輪受高沸點有機物及聚合物之影響分析 135 4.5 小結 152 五、 活性碳流體化床 157 5.1 前言 157 5.2檢測分析方法與實驗裝置 159 5.2.1 靜態飽和吸附測試設備 159 5.2.2 單段式吸附方法及設備 160 5.2.3 兩段式脫附系統 161 5.3 結果與討論 163 5.3.1 GBAC的流體化初速度與終速度 163 5.3.2 GBAC吸附試驗 171 5.3.3影響GBAC吸附性能因素之綜合討論 179 5.4 小結 198 六、 結論與建議 202 6.1 結論 202 6.1-1沸石型蜂巢狀吸附轉輪 202 6.1-2活性碳流體化床 203 6.1-3沸石型蜂巢狀吸附轉輪與活性碳流體化床比較 204 6.2 建議 204 七、 參考文獻 207 VITA

    七、參考文獻
    7.1 國內文獻
    江右君,〝活性碳物化特性對揮發性有機物吸附之影響,〞臺灣大學環境工程學研究所博士論文 (1999)。
    江鴻龍,〝活性碳物化特性對 VOCs 吸附之影響,〞臺灣大學環境工程學研究所博士論文 (1995)。
    朱小蓉, 〝活性碳講義,〞華懋科技股份有限公司 (2000) 。
    林育旨,〝沸石轉輪吸附材改良與結合冷凝器效能提升研究,〞交通大學環境工程學研究所博士論文 (2005)。
    林家慶,〝分子篩結構的探討,〞清華大學化學系博士論文 (1980)。
    顏秀慧、鄭福田,〝沸石對甲苯與丁酮之吸附研究,〞第十三屆空氣污染控制技術研討會論文集, 205-212,1996。
    經濟部工業局工業污染防治技術手冊,〝有機溶劑污染控制,〞p10,1994。
    經濟部工業局,〝揮發性有機物廢氣減量及處理技術手冊,〞2004。
    顏秀慧,〝沸石對揮發性有機物吸附行為之研究,〞臺灣大學環境工程學研究所博士論文 (1998)。

    7.2 國外文獻
    ASHRAE,〝MASS TRANSFER,〞 ASHRAE Fundamentals Handbook, Chapter 5 (1997).
    Akubuiro,E.C.,Wagner,N.J.,〝Assessment of Activated Carbon Stability toward Adsorbed Organics,〞Ind. Eng. Chem.Res.,31,(1).339-346,(1992).
    Blocki, S.W.,〝Hydrophobic Zeolite Adsorbent: A Proven Advancement in Solvent Separation Technology,〞Environmental Process, 12(3), 226-230, 1993.
    Breck, D.W. ,〝Zeolite Molecular Sieves,〞John Wiley & Sons (1974).
    Brunauer, S., Emmet, P.H., Teller, E., 〝Adsorption of Gas in Multimolectular Layers, 〞J.Amer.Chem.Soci. 60:309, 1938.
    Carta, G., Lewus, R.K., 〝Film Model Approximation for Multicomponent Adsorption, 〞Adsorption 6 (1), pp. 5-13 (2000).
    Cheng, L.S., Yang,R.T., 〝Predicting Isotherms in Micropores for Different Molecules and Temperatures from a Know Isotherm by Improved Horvath – Kawazoe Equations, 〞Adsorption 1 (3), pp. 187-196 (1995).
    Cooper,C.D., Alley,F.C., 〝Air Pollution Control – A Design Approach, 〞Waveland Press, Inc. (1994).
    Dubinin,M.M.,Kadlec,O.,〝New Ways in Determination of The Parameters of Porous Structure of Microporous Carbonaceous Adsorbents,〞Carbon,13:263-265,(1975).
    Dubinin,M.M.,Stoeckli,H.F.,〝Homogeneous and Heterogeneous Micropore Structures in Carbonaceous Adsorbents,〞Journal of Colloid and Interface Science,75:34-42,(1980).
    Eder, F., Stockenhuber,M. and Lercher, J. A. ,〝Bronsted Acid Site and Pore Controlled Siting of Alkane Sorption in Acidic Molecular Sieves,〞J. Phys. Chem. B 101, pp. 5414-5419 (1997).
    EPA of United States Environmental Protection Agency, 〝Technical Bulletin: Choosing an Adsorption System for VOC: Carbon, Zeolite, or Polymers, 〞EPA 456/F-99-004 (1999).
    Gregg,S.J.,Sing,K.S.W., 〝Adsorption Surface Area and Porosity,〞2nd edition, Academic Press, London,1982.
    Hirose, T., Kuma, T., 〝Performance of Honeycomb Rotor Dehumidifiers in Improved Methods of Adsorbent Preparation, 〞J. Chem. Eng. Japan, 29, pp.376-378 (1996).
    Hutson,N.D., Yang,R.T. , 〝Theoretical Basis for the Dubinin – Radushkevitch (D-R) Adsorption Isotherm Equation, 〞Adsorption 3 (3), pp. 185-195 (1997).
    Ivanov, V., Graham, G.W., Shelef, M., 〝Adsorption of Hydrocarbons by ZSM-5 Zeolites with Different SiO2/Al2O3 Ratio: A Combined FTIR and Gravimetric Study,〞Applied Catalysis B: Environmental 21, pp.243-258 (1999).
    Kays,W.M., Crawford, M.E, 〝Convective Heat and Mass Transfer - Third Edition, 〞McGRAW-HILL, Inc. (1993).
    Kodama, A., M. Goto, T. Hirose and T. Kuma, 〝Experimental Study of Optimal Operation for a Honeycomb Adsorber Operated with Thermal Swing, 〞J. Chem. Eng. Japan, 26, pp.530-535 (1993).
    Kodama, A., M. Goto, T. Hirose and T. Kuma, 〝Temperature Profile and Optimal Rotation Speed of a Honeycomb Rotor Adsorber Operated with Thermal Swing, 〞J. Chem. Eng. Japan, 27, pp.644-649 (1994).
    Kodama, A., M. Goto, T. Hirose and T. Kuma, 〝Performance Evaluation for a Thermal Swing Honeycomb Rotor Adsorber Using a Humidity Chart, 〞J. Chem. Eng. Japan, 28, pp.19-24 (1995).
    Kuma, T., Okano, H., 〝Method of Manufacturing of Dehumidifier Element, 〞United States Patent 4,911,755 (1990).
    Kuma, T., 〝Gas Adsorbing Element and Method for Forming Same, 〞 United States Patent 5, 348, 7922 (1994).
    Kuma, T., Mitsuma, Y., Ota, Y., Hirose, T., 〝Removal Efficiency of Volatile Organic Compounds, VOCs, by Ceramic Honeycomb Rotor Adsorbents, 〞Proc. 5th Int. Conf. Fundamentals of Adsorption. LeVan. M. D. Ed. pp.465-472, Kluwer Academic Publishers. Boston. USA (1996).
    Lin ,T.F., Nazaroff,W.W., 〝Transport and Sorption of Water Vapor in in Activated Carbon, 〞J. of Environmental Engineering, pp.176-182 (1996).
    Lin, T.F., Nazaroff, W.W. , 〝Transport and Sorption of Organic Gases in Activated Carbon, 〞J. of Environmental Engineering, pp.169-175 (1996).
    Mitsuma,Y., 〝Application and Efficiency of Honeycomb Adsorbent Rotor for VOC Treatment, 〞Ph.D thesis of Kumamoto University, Japan (1998)
    Mitsuma, Y., Ota, Y., Hirose, T., 〝Performance of Thermal Swing Honeycomb VOC Concentrators, 〞J. Chem. Eng. Japan, 31, pp.484-484 (1998).
    Mitsuma, Y., Ota, Y., Hirose, T., 〝Analysis of VOC Reversing Adsorption and Desorption Characteristics for Actual Efficiency Prediction for Ceramic Honeycomb Adsorbent, 〞 J. Chem. Eng. Japan, 31, pp.253-257 (1998).
    Mitsuma, Y., Ota, Y., Kuma, T., Hirose, T., 〝Practice of The VOC Abatement by Thermal Swing Ceramic Monolith Adsorbers, 〞 Proc. 4th Japan-Korea Syposium on Seperation Technology, pp.479-482, Tokyo. Japan (1996).
    Ricaards, J., 〝Control of Gaseous Emissions, 〞North Carolina State University, APTI Course 415, 2nd Edition (1995).
    Ried, R. C., Sherwood, T.K., 〝The Properties of Gases and Liquids, 〞McGraw-Hill, New York (1966).
    Ruthven,D.M.,〝Principles of Adsorption and Adsorption Process, 〞JOHN WILEY & SONS (1984).
    Russell,B.P., 〝 An Equilibrium Relation for Gas Adsorption Applications, 〞Adsorption 5 (3), pp. 193-197 (1999).
    SEIBU GIKEN Co., LTD. Technical and Performance Data.
    Sing,K.S.W.,Everett,D.H.,Haul.R.A.W.,Moscou,L.,Pierotti,R.A.,Rouquerol,J.,Siemieniewska,T.,〝Reporting Pyysisorption Data for Gas/Solid Systems-with Special Reference to the Determination of Surface Area and Porosity,〞Pure&Appl.Chem.,57(4):603-619,(1985).
    Staudt,R., Dreisbach,F., Keller,J.U. , 〝Correlation and Caculation of Multicomponent Adsorption Equilibria Data Using a Generalized Adsorption Isotherm, 〞Adsorption 4 (1), pp. 57-62 (1998).
    Stoeckli,H.F.,〝On the Theoretical Fundation of The Dubinin-Astakhov Equation,〞Carbon,19:325-326,(1981).
    Stoeckli,H.F.,Kraehenbuehl,F.,Ballerini,L.,Bernardini,S.D.,〝Recent Development in The Dubinin Equation,〞Carbon,27:125-128,(1989).
    Sundaram, N., 〝A Modification of The Dubinin Isotherm, 〞 Langmuir,9:1568-1573 (1993).
    Suzuki, M., 〝Adsorption Engineering, 〞 Amsterdam (1990).
    Suzuki, M.,Sakoda,A., 〝Gas Adsorption on Activated Carbons with Size Distribution of Micropores, 〞 Journal of Chemical Engineering of Japan,15:279-285 (1982).
    Theodore, L., Barden, J.E., 〝Mass Transfer Operations, 〞Louis Theodore (1997).
    US EPA Technical Bulletin,〝Choosing a Adsorption System for VOC: Carbon, Zeolite, or Polymers? 〞May, 1999.
    Wang, C.H.and Hwang,B.J.,〝A General Adsorption Isotherm Considering Multi-layer Adsorption and Heterogeneity of Adsorpent, 〞Chemical Engineering Science, vol 55, pp.4311-4321 (2000).
    Wey, M.Y., Yu, L.J., Jou, S.I., Chiang, B.C.,Wei, M.C. Yen, S.H.,Jeng, F.T. , 〝Adsorption on Carbon and Zeolite of Pollutants from Flue Gas During Incineration,〞J. of Environmental Engineering, pp.925-932 (1999).
    Yen, S.H.,Jeng, F.T. , 〝Adsorption of VOCs on Zeolite,〞AWMA presentation, 89th annual meeting & exhibition, Nashville, Tennessee (1996).
    Yen, S.H.,Jeng, F.T. , 〝Competitive Adsorption of VOCs on Zeolite,〞AWMA presentation, 90th annual meeting & exhibition, Toronto, Canada (1997).
    Yen, S.H.,Jeng, F.T. , 〝Adsorption of Methyl_Ketone Vapor onto Zeolite,〞J. Environ. Sci. Health, pp.2087-2100 (1997).
    Yen, S.H.,Jeng, F.T. , 〝The Adsorption of Toluene Vapor onto Zeolites and Modified Fly Ash,〞Seminar on Environmental Engineering, Taipei, Taiwan, R.O.C., 24-26 September (1998).
    Yon, C.M., Akubuiro, R., 〝MOLSIV Adsorbents – Molecular Sieves For Emissions Control, 〞UOP, (1992).
    Zhau, X.S., 〝Synthesis,modification,characterization and application of MCM-41 for VOC control , 〞Ph.D. thesis of the unervisity of Queensland(1998).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE