簡易檢索 / 詳目顯示

研究生: 黃郁清
Huang, Yu-Ching
論文名稱: 硫鍵結GD3腫瘤相關醣類抗原之合成研究
Synthesis of S-Linked GD3 Tumor-Associated Carbohydrate Antigen
指導教授: 林俊成
Lin, Chun-Cheng
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 119
中文關鍵詞: GD3
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 腫瘤細胞表面通常有過量表達的醣體結構,稱為腫瘤相關醣類抗原(tumor-associated carbohydrate antigens,TACAs),這些醣類抗原被研究用以開發抗癌疫苗。然而氧鍵結之醣苷鍵容易被醣水解酶影響而斷鍵,為了解決醣苷鍵結受到化學或酵素水解的問題,將醣苷鍵上之氧原子置換為硫原子已被提出可以抵抗水解作用。
    本論文的目標是合成硫鍵結GD3,將非還原端的唾液酸雙醣之氧鍵結修飾為硫鍵結,合成的策略分別採用 [1+1+2]和[2+2]兩種途徑。於前者的合成途徑,將唾液酸的4號氧及5號氮保護成惡唑烷酮之予體,與苯甲基保護的乳糖受體進行耦合得到三醣,然而在將8’’碳上之羥基轉換為碘基時,反應並不成功;後者的合成路徑,則是使用具有一個NHTFA修飾於5號碳上之硫鍵結雙唾液酸作為予體,與苯甲基保護的乳糖受體進行唾液酸基化反應,可得到單一□位向的硫鍵結GD3衍生物。


    目錄 中文摘要 Ⅰ 英文摘要 Ⅱ 簡寫表 Ⅲ 目錄 Ⅴ 圖目錄 Ⅶ 表目錄 Ⅸ 附圖目錄 Ⅹ 第一章 緒論 1 1.1 前言 1 1.2 腫瘤相關醣類抗原 2 1.3 硫鍵結寡醣的研究與發展 5 1.4 文獻回顧 7 1.4.1 唾液酸醣苷鍵□位向的建立 8 1.4.2 醣體抗原氧鍵結GD3合成研究相關文獻 11 1.4.3 硫鍵結醣苷鍵合成文獻 16 1.4.4 硫鍵結腫瘤相關醣類合成及疫苗免疫研究 19 1.5 研究動機與逆合成分析 23 第二章 結果與討論 27 2.1 [1+1+2]合成策略 27 2.2 [2+2]合成策略 34 第三章 結論 46 第四章 實驗部份 47 4.1 一般實驗方法 47 4.2 實驗步驟與光譜資料 48 參考文獻 75 附錄 85

    參考文獻
    1. Danishefsky, S. J.; Allen, J. R. From the laboratory to the clinic: A retrospective on fully synthesis carbohydrate-based anticancer vaccines. Angew. Chem. Int. Ed. 2000, 39, 836-863.
    2. Jones, C. Vaccins based on the cell surface carbohydrates of pathogenic bacteria. An. Acad. Bras. Cienc. 2005, 77, 293-324.
    3. Dube, D. H.; Bertozzi, C. R. Glycans in cancer and inflammation – potential for therapeutics and diagnostics. Nat. Rev. Drug. Discov. 2005, 4, 477-488.
    4. Hakomori, S.; Zhang, Y. Glycosphingolipid antigens and cancer therapy. Chem. Biol. 1997, 3, 97-104.
    5. Tokokuni, T.; Singhal, A. K. Synthetic carbohydrate vaccines based on tumor-associated antigens. Chem. Soc. Rev. 1995, 231-242.
    6. Springer, G. F. Immunoreactive T and TN epitopes in cancer diagnosis, prognosis and immunotherapy. J. Mol. Med. 1997, 75, 594-602.
    7. Slovin, S. F.; Keding, S. J.; Ragupathi, G. Carbohydrate vaccines as immunotherapy for cancer. Immumol. Cell. Biol. 2005, 83, 418-428.
    8. Ouerfelli, O.; Warren, J. D.; Wilson, R. M.; Danishefsky. S. J. Synthetic carbohydrate based antitumor vaccines: challenges and opportunities. Expert. Rev. Vaccines 2005, 4, 677-685.
    9. Miyagi, T.; Wada, T.; Yamaguchi, K.; Hata, K. Sialidase and malignancy: A minireview. Glycoconjugate J. 2003, 20, 189-198.
    10. Urban, D.; Skrydstrup, T; Beau, J. M. First synthesis of a C-glycoside anologue of a tumor-associated carbohydrate antigen employing samarium diiodide promoted C-glycosylation. Chem. Commun. 1998, 955-956.
    11. Loay, L.; Riedner, J.; Vogel, P. C-Linked disaccharide analogue of the Thomsen-Friedenreich (T)-epitope □-O-conjugated to L-Serine. Chem. Eur. J. 2005, 11, 3565-3573.
    12. Witczak, Z. J.; Chhabra, R.; Chen, H.; Xie, X.-Q. The synthesis of 3-deoxy-4-thiocellobiose from levoglucosenone. Carbohydr. Res. 1997, 301, 167-175.
    13. Fairweather, J. K.; Driguez, H. in Carbohydrates in Chemistry and Biology, Vol. 1 (Eds.: Ernst, B.; Hart, G.W.; Sinay, P.), Wiley-VCH, Weinheim, 2000, pp. 531.
    14. Weimar, T.; Kreis, U. C.; Andrews, J. S.; Pinto, B. M. Conformational analysis of maltoside heteroanalogues using high-quality NOE data and molecular mechanics calculations. Flexibility as a function of the interglycosidic chalcogen atom. Carbohydr. Res. 1999, 315, 222-233.
    15. Wilson, J. C.; Kiefel, M. J.; Angus, D. I.; von Itzstein, M. Investigation of the stability of thiosialosides toward hydrolysis by sialidases using NMR spectroscopy. Org. Lett. 1999, 1, 443-446.
    16. Bennett, S.; von Itzstein, M.; Kiefel, M. J. A simple method for the preparation of thioglycosides of N-acetylneuraminic acid. Carbohydr. Res. 1994, 259, 293-299.
    17. Kiefel, M. J.; Beisner, B.; Bennett, S.; Holmes, I. D.; von Itzstein, M. Synthesis and biological evaluation of N-acetylneuraminic acid-based rotavirus inhibitors. J. Med. Chem. 1996, 39, 1314-1320.
    18. Malisan, F.; Rippo, M. R.; De Maria, R.; Testi, R. Lipid and glycolipid mediators in CD95-induced apoptotic signaling. Results Probl. Cell Differ. 1999, 120, 65-76.
    19. Willison, H. J., O’Hanlon, G. M. The Immunopathgenesis of Miller Fish syndrome. J. Neuroimmunol. 1999, 100, 3-12.
    20. Galonic, D. P.; Gin, D. Y. Chemical glycosylation in the synthesis of glycoconjugate antitumor vaccines. Nature 2007, 446, 1000-1007.
    21. Boons, G.-J.; Demchenko, A. V. Recent advances in O-sialylation. Chem. Rev. 2000, 100, 4539-4565.
    22. Kanie, O.; Kiso, M.; Hasegawa, A. Glycosylation using methylthioglycosides of N-acetylneuraminic acid and dimethyl(methylthio)sulfonium triflate. J. Carbohydr. Chem. 1988, 7, 501-506.
    23. Hasegawa, A.; Ohki, H.; Nagahama, T.; Ishida, H.; Kiso, M. A facile, large-scale preparation of the methyl 2-thio-glycoside of N-acetylneuraminic acid, and its usefulness for the α-stereoselective synthesis of sialoglycosides. Carbohydr. Res. 1991, 212, 277-281.
    24. Schmidt, R. R.; Behrendt, M.; Toepfer, A. Nitriles as solvents in glycosylation reactions: highly selective β-glycoside synthesis. Synlett 1990, 694-696.
    25. Vankar, Y. D.; Vankar, P. S.; Behrendr, M.; Schmidt, R. R. Synthesis of β-O-glycosides using enol ether and imidate derived leaving groups. emphasis on the use of nitriles as a solvent. Tetrahedron 1991, 47, 9985-9992.
    26. Schmidt, R. R.; Rücker, E. Stereoselective glycoidations of uronic acids. Tetrahedron Lett. 1980, 21, 1421-1424.
    27. Birberg, W.; Lönn, H. Glycosylation with sialic acid at HO-3 of three different O-protected D-galactosides in acetonitrile/dichloromethane at low temperature. Tetrahedron Lett. 1991, 32, 7457-7458.
    28. Okamoto, K.; Kondo, T.; Goto, T. Syntheses of α(2-9) and α(2-8) linked neuraminylneuraminic acid derivatives. Tetrahedron Lett. 1986, 27, 5229-5232.
    29. Ito, Y.; Numata, M.; Sugimoto, M.; Ogawa, T. Highly stereoselective synthesis of ganglioside GD3. J. Am. Chem. Soc. 1989, 111, 8501-8510.
    30. Ito, Y.; Nunomura, S.; Shibayama, S.; Ogawa, T. Studies directed toward the synthesis of polysialogangliosides: The regioand stereocontrolled synthesis of rationally designed fragments of the tetrasialoganglioside GQl. J. Org. Chem. 1992, 57, 1821-1831.
    31. Demchenko, A.; Boons, G.-J. A novel direct glycosylation approach for the synthesis of dimers of N-acetylneuraminic acid. Chem. Eur. J. 1999, 5, 1278-1283.
    32. De Meo, C.; Demchenko, A. V.; Boons, G.-J. A stereoselective approach for the synthesis of α-sialosides. J. Org. Chem. 2001, 66, 5490-5497.
    33. Tanaka, H.; Nishiura, Y.; Takahashi, T. Stereoselective synthesis of oligo-α-(2,8)-sialic acids. J. Am. Chem. Soc. 2006, 128, 7124-7125.
    34. Tanaka, H.; Nishiure, Y.; Takahashi, T. An efficient convergent synthesis of GP1c ganglioside epitope. J. Am. Chem. Soc. 2008, 130, 17244-17245.
    35. Boons, G.-J.; Demchenko, A. V. Recent advances in O-sialylation. Chem. Rev. 2000, 100, 4539-4565.
    36. Castro-Palomino, J. C.; Simon, B.; Speer, O.; Leist, M.; Schmidt, R. R. Synthesis of ganglioside GD3 and its comparison with bovin GD3 with regard to oligodendrocyte apoptosis mitochondrial damage. Chem. Eur. J. 2001, 7, 2178-2184.
    37. Hanashima, S.; Castagner, B.; Esposito, D.; Nokami, T.; Seeberger, P. H. Synthesis of a sialic acid α(2-3) galactose building block and its use in a linear synthesis of Sialyl Lewis X. Org. Lett. 2007, 9, 1777-1779.
    38. Miller-Podraza, H.; Månsson, J.-E.; Svennerholm, L. Pentasialogangliosides of human brain. FEBS Lett. 1991, 288, 212-214.
    39. Suzuki, Y.; Sato, K.; Kiso, M.; Hasegawa, A. New ganglioside analouges that inhibit influenze virus sialidase. Glycoconjugate J. 1990, 7, 349-356.
    40. Eisele, T.; Toepfer, A.; Kretzschmar, G.; Schmidt, R. R. Synthesis of a thio-linked analogue of sialyl lewis X. Tetrahedron Lett. 1996, 37, 1389-1392.
    41. Pachamuthu, K.; Schmidt, R. R. Synthetic routes to thiooligosaccharides and thioglycopeptides. Chem. Rev. 2006, 106, 160-187.
    42. Szilagyi, L.; Illyes, T.-Z.; Herczegh, P. Elaboration of a novel type of interglycosidic linkage: syntheses of disulfide disaccharides. Tetrahedron Lett. 2001, 42, 3901-3903.
    43. Knapp, S.; Darout, E. The surprise synthesis of α-GlcNAc 1-C-sulfonates. Tetrahedron Lett. 2002, 43, 6075-6078.
    44. Turnbull, W. B.; Field, R. A. Thio-oligosaccharides of sialic acid – synthesis of an α(2-3) sialyl galactoside via a gulofuranose/galactopyranose approach. J. Chem. Soc., Perkin Trans. 1 2000, 1859-1866.
    45. Rich, J. R.; Bundle, D. R. S-linked ganglioside analogues for use in conjugate vaccines. Org. Lett. 2004, 6, 897-900.
    46. Rich, J. R.; Wakarchuk, W. W.; Bundle, D. R. Chemical and chemoenzymatic synthesis of S-linked ganglioside analogues and their protein conjugates for use as immunogens. Chem. Eur. J. 2006, 12, 845-858.
    47. Danishefsky, S. J.; Behar, V.; Raolph, J. T.; Lloyd, K. O. Application of the assembly method to the concise synthesis of neoglycoconjugates of Ley and Leb blood group determinants and of H-Type I and H-Type II oligosaccharides. J. Am. Chem. Soc. 1995, 117, 5701-5711.
    48. Bundle, D. R.; Rich, J. R.; Jacques, S.; Yu, H. N.; Nitz, M.; Ling, C. C. Thiooligosaccharide conjugate vaccines evoke antibodies specific for native antigens. Angew. Chem. Int. Ed. 2005, 44, 7725–7729.
    49. Schneerson, R.; Barrera, O.; Sutton, A.; Robbins, J. B. Preparation, characterization, and immunogenicity of Haemophilus influenzae type b polysaccharide-protein conjugates. J. Exp. Med. 1980, 152, 361-376.
    50. Jacques, S.; Rich, J. R.; Ling, C. C.; Bundle, D. R. Chemoenzymatic synthesis of GM3 and GM2 gangliosides contained a truncated ceramide functionalized for glycoconjugatd synthesis and solid phase applications. Org. Biomol. Chem. 2006, 4, 142-154.
    51. Ragupathi, G.; Park, T. K.; Zhang, S.; Kim, I. J.; Graber, L.; Adluri, S.; Lloyd, K. O.; Danishefsky, S. J.; Livingston, P. O. Immunization of mice with a fully synthetic Globo H antigen results in antibodies against human cancer cells: a combined chemical-immunological approach to the fashioning of an anticancer vaccines. Angew. Chem. Int. Ed. 1997, 36, 125-128.
    52. Holmberg, L.; Sandmaier, B. Vaccination with Theratope (sTn-KLH) as treatment for breast cancer. Espert Rev. Vaccines 2004, 3, 655-663.
    53. Zhu, J.; Wan, Q.; Lee, D.; Yang, G.; Spassova, M. K.; Ouerfelli, O.; Ragupathi, G.; Damani, P.; Livingston, P. O.; Danishefsky, S. J. From synthesis to biologics: preclinical data on a chemistry derived anticancer vaccine. J. Am. Chem. Soc. 2009, 131, 9298-9303.
    54. Wan, Q.; Chen, J.; Chen, G.; Danishefsky, S. J. A potentially valuable advance in the synthesis of carbohydrate-based anticancer vaccines through extended cycloaddition chemistry. J. Org. Chem. 2006, 71, 8244-8249.
    55. Kida, shinya; Maeda, M.; Hojo, K.; Eto, Y.; Nakagawa, S.; Kawasaki, K. Studies on heterobifunctional cross-linking reagents, 6-maleimidohexanoic acid active esters. Chem. Pharm. Bull. 2007, 55, 685-687.
    56. Lin, C,-C.; Lin, N.-P.; Sahabuddin, L. S.; Reddy, V. R.; Huang, L,-D.; Hwang, K. C.; Lin, C,-C. 5-N,4-O-Carbonyl-7,8,9-tri-O-chloroacetyl-protected sialyl donor for the stereoselective synthesis of □-(2→9)-tetrasialic acid. J. Org. Chem. 2010, ASAP. DOI: 10.1021/jo100824s.
    57. Lu, K.-C.; Hsieh, S.-Y.; Patkar, L. M.; Chen, C.-T.; Lin, C. -C. Simple and efficient per-O-acetylation of carbohydrates by lithium perchlorate catalyst. Tetrahedron 2004, 60, 8967-8973.
    58. Hsieh, S.-Y.; Jan, M.-D.; Patkar, L. M.; Chen, C.-T.; Lin, C. -C. Synthesis of Pk trisaccharide with a carboxyl functionality linker. Carbohydr. Res. 2005, 340, 49-57.
    59. Lin, C.-C.; Jan, M.-D.; Weng, S.-S; Lin, C.-C.; Chen, C.-T. O-Isopropylidenation of carbohydrate catalyzed by vanadyl triflate. Carbohydr. Res. 2006, 341, 1948-1953.
    60. Marra, A.; Sinay, P. Acetylation of N-acetylneuraminic acid and its methyl ester. Carbohydr. Res. 1989, 190, 317-322.
    61. Yu, C.-S.; Niikura, K.; Lin, C.-C; Wong, C.-H. The thioglycoside and glycosyl phosphite of 5-azido sialic acid: excellent donors for the □-glycosylation of primary hydroxy groups. Angew. Chem. Int. Ed. 2001, 40, 2900-2903.
    62. Dabrowski, U.; Friebolin, H.; Brossmer, R.; Supp, M. 1H-NMR studies at N-acetyl-D-neuramic acid ketosides for the determination of the anomeric configuration. Tetrahedron Lett. 1979, 48, 4637-4640.
    63. D. J. M. van der Vleugel; W. A. R.; van Heeswijk; F. G. Vliegenthart. A facile preparation of alkyl α-glycosides of the methyl ester of N-acetyl-D-neuraminic acid. Carbohydr. Res. 1982, 102, 121-130.
    64. Procopiou, P. A.; Baugh, S. P. D.; Flack, S. S.; Inglis, G. G. An extremely fast and efficient acylation reaction of alcohols with acid anhydrides in the presence of trimethylsilyl trifluoromethanesulfonate as catalyst. Chem. Commun. 1996, 2625-2626.
    65. Procopiou, P. A.; Baugh, S. P. D.; Flack, S. S.; Inglis, G. G. An extremely powerful acylation reaction of alcohols with acid anhydrides catalyzes by trimethylsilyl trifluoromethanesulfonate. J. Org. Chem. 1998, 63, 2342-2347.
    66. Iversen, T.; Budle, D. R. Benzyl trichloroacetimidate, a versatile reagent for acid-catalyzed benzylation of hydroxy-groups. J. Chem. Soc. Chem. Commun. 1981, 1240-1241.
    67. Ishihara, K.; Kurihara, H.; Yamamoto, H. An extremely simple, convenient, and selective method for acetylating primary alcohols in the presence of secondary alcohols. J. Org. Chem. 1993, 58, 3791-3793.
    68. Brandstetter, H. H.; Zbiral, E. Structural variations of N-acetylneuraminic acids. Liebigs Ann. Chem. 1983, 2055-2065.
    69. Eby, R.; Schuerch, C. The synthesis of □- and □-(1→2)- and -(1→3)-linked glucopyranose disaccharides and their protein conjugates. Carbohydr. Res. 1982, 102, 131-138.
    70. Ren, C. T.; Chen, C.-S.; Wu, S.-H. Synthesis of a sialic acid dimer derivative, 2’□-O-Benzyl Neu5Ac-□-(2→5)Neu5Gc. J. Org. Chem. 2002, 67, 1376-1379.
    71. Fan, G.-T.; Lee, C.-C.; Lin, C.-C.; Fang, J.-M. Stereoselective synthesis of Neu5Ac□(2→5)Neu5Gc: the building block of oligo/poly(→5-OglycolylNeu5Gc□2→) chains in sea urchin egg cell surface glycoprotein. J. Org. Chem. 2002, 67, 7565-7568.
    72. Zhao, Q.; Lou Y.; Xiong, R.; Li, H.; Shen, J. Regioselective synthesis of 4azido-Neu2en5,7Ac21Me and its intramolecular transformation to 4azido-Neu2en5,9Ac21Me. Carbohydr. Res. 2008, 343, 2459-2462.
    73. Yan, M.-C.; Chen, Y.-C.; Wu, H.-T.; Lin, C.-C.; Chen, C.-T.; Lin, C.-C. Removal of acid-labile protecting groups on carbohydrates using water-tolerant and recoverable vanadyl triflate catalyst. J. Org. Chem. 2007, 72, 299-302.
    74. Olah, G. A.; Husain, A.; Singh B. P.; Mehrotra, A. K. Synthetic methods and reactions: synthetic transformations with trichloromethylsilane/sodium iodide reagent. J. Org. Chem. 1983, 48, 3667-3672.
    75. Vutukuri, D. R.; Bharathi, P.; Yu, Z.; Rajasekaran, K.; Tran, M.-H.; Thayumanavan, S. A mild deprotection strategy for allyl-protecting groups and its implications in sequence specific dendrimer synthesis. J. Org. Chem. 2003, 68, 1146-1149.
    76. Lamberth, C.; Bednarski, M. D. An efficient method for the deprotection of allyl glycosides with adjacent azides: the circumvention of unwanted dipolar cycloaddition products. Tetrahedron Lett. 1991, 32, 7369-7372.
    77. Corey, E. J.; Suggs, J. W. Selective cleavage of allyl ethers under mild conditions by transition metals. J. Org. Chem. 1973, 38, 3224.
    78. Nicolaou, K. C.; Caulfield, T. J.; Kataoka, H.; Stylianides, N. A. Total synthesis of the tumor-associated LeX family of glycosphingolipids. J. Am. Chem. Soc. 1990, 112, 3693-3695.
    79. Smith, A. B.; Rivero, R. A.; Hale, K. J.; Vaccaro, H. A. Total synthesis of (+)-phyllanthoside. Development of the Mitsunobu glycosyl ester protocol. J. Am. Chem. Soc. 1991, 113, 2092-2112.
    80. Dufner, G.; Schwörer, R.; Müller, B.; Schmidt, R. R. Base- and sugar-modified cytidine monophosphate N-acetylneuraminic acid (CMP-Neu5Ac) analogues – synthesis and studies with □(2-6)-sialyltransferase from rat liver. Eur. J. Org. Chem. 2000, 14672-1482.
    81. Crabtreeh, R.; Felkin, H.; Morris, G. Activation of molecular hydrogen by cationic iridium diene complexes. J. C. S.. Chem. Commum. 1976, 716-717.
    82. Audry, D.; Ephritikhine, M.; Felkin, H. Isomerisation of allyl ethers catalysed by the cationic iridium complex [Ir(cyc1o-octa-1,5-diene)(PMePh2)2]PF6. A highly stereoselective route to trans-propenyl ethers. J. C. S. Chem. Commum. 1978, 694-695.
    83. Sim, M. M.; Kondo, H.; Wong, C.-H. Synthesis of dibenzyl glycosyl phosphates using dibenzyl N,N-diethylphosphoramidite as phosphitylating reagent: an effective route to glycosyl phosphates, nucleotides, and glycosides. J. Am. Chem. Soc. 1993, 115, 2260-2267.
    84. Stallforth, P.; Adibekian, A.; Seeberger, P. H. De Novo synthesis of a D-galacturonic acid thioglycoside as key to the total synthesis of a glycosphingolipid from Sphingomonas yanoikuyae. Org. Lett. 2008, 10, 1573–1576.
    85. Lin, C.-C.; Adak, A. K.; Horng, J.-C.; Lin, C.-C. Phosphite-based sialic acid donors un the synthesis of α(2→9) oligosialic acids. Tetrahedron 2009, 65, 4714-4725.
    86. Lin, C.-C.; Huang, K.-T.; Lin, C.-C. N-Trifluoroacetyl sialyl phosphite donors for the synthesis of α(2→9) oligosialic acids. Org. Lett. 2005, 7, 4169-4172.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE