簡易檢索 / 詳目顯示

研究生: 蔡正寬
Tsai, Chen-Kuan
論文名稱: 在閥值邏輯電路上的靜態時序分析
Static Timing Analysis for Threshold Logic Circuits
指導教授: 王俊堯
Wang, Chun-Yao
口試委員: 溫宏斌
Wen, Hung-Pin
麥偉基
Mak, Wai-Kei
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 34
中文關鍵詞: 閥值邏輯時序分析觸發準則演算法
外文關鍵詞: Threshold Logic, Timing Analysis, Sensitization Criterion, Algorithm
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 閥值邏輯是一種布林邏輯表示式,相較於傳統的表示方法具有較精簡的特性。近年來,由於先進奈米材料技術的進步,相關研究紛紛提出有效率的閥值邏輯閘實現方式,因此,閥值邏輯上的研究,如多層合成、驗證及測試,已經被提出來。另一方面,伴隨著各種閥值邏輯閘實現方式,各種延遲模型也被提出,然而在閥值邏輯電路上,卻尚無相關靜態時序分析被提出。由於閥值邏輯,相較於傳統布林邏輯,以一種不同方式來評估功能輸出,因此對於時序關鍵分析上的路徑觸發準則也有所差異。本篇論文提出了第一個針對閥值邏輯閘的路徑觸發準則,並發展在閥值邏輯電路上的靜態時序分析演算法。實驗結果展現該演算法在閥值邏輯電路上,相較於以時序模擬方式,進行時序分析的精確及效能。


    Threshold logic has been known as an alternative representation of Boolean logic due to its compactness characteristic. Recently, the developments in advanced nanotechnologies have also promised efficient implementations of threshold logic gates. Thus, many synthesis methodologies for threshold logic circuits have been proposed. On the other hand, the delay models of threshold logic gates accompanied with their implementation development have also been proposed. However, there has not been a timing analysis algorithm for threshold logic circuits to the best of our knowledge. Since threshold logic has a different mechanism in functional evaluation compared to the traditional Boolean logic, a threshold logic gate can represent a more complex function. As a result, the path sensitization criterion for criticality analysis in threshold logic circuits is also different. In this work, we propose a path sensitization criterion for threshold logic circuits, and develop a static timing analysis algorithm. The experimental results show the accuracy and efficiency of the proposed algorithm compared to the dynamic simulation approach for a set of MCNC and IWLS 2005 benchmarks.

    Abstract i 1 Introduction 1 2 Background 4 2.1 Threshold logic 4 2.2 Path Sensitization Criteria in Boolean Logic 7 3 A Motivational Example 9 4 Sensitization Criterion 11 5 Static Timing Analysis for Threshold Logic Networks 17 5.1 Preprocess 18 5.2 Path Sensitization 20 5.3 Overall Static Timing Analysis Approach 23 5.4 Timing Optimization of Threshold Logic Network 24 6 Experimental Results 25 7 Conclusion and Future Work 30

    [1] C. Albrecht, “Iwls 2005 benchmakrs," 2005, http://iwls.org/iwls2005/benchmarks.html.
    [2] M. J. Avedillo and J. M. Quintana, “A threshold logic synthesis tool for rtd circuits," in Proc. European Symp. on Digital System Design, 2004, pp. 624-627.
    [3] M. J. Avedillo, J. M. Quintana, H. Pettenghi, P. M. Kelly, and C. J. Thompson, “Multi- threshold threshold logic circuit design using resonant tunnelling devices," Electron. Lett., vol. 39, pp. 1502-1504, 2003.
    [4] V. Beiu, J. M. Quintana, and M. J. Avedillo, “Vlsi implementations of threshold logic-a comprehensive survey," in Tutorial at Int. Joint Conf. Neural Networks, 2003.
    [5] J. Benkoski, E. V. Meersch, L. Claesen, and H. D. Man, “Timing veri_cation using statically sensitizable paths," IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 9, pp. 10723-10784, 1990.
    [6] P. Celinski, S. Al-Sarawi, and D. Abbott, “Delay analysis of neuron-mos and capacitive threshold-logic," in Proc. Int. Conf. Electronics, Circuits and Systems, 2000, pp. 932-935.
    [7] P. Celinski, S. D. Cotofana, J. F. Lopez, S. F. Al-Sarawi, and D. Abbott, “State of the art in cmos threshold logic vlsi gate implementations and systems," in Proc. Int. Conf. VLSI Circuits and Systems, 2003, pp. 53-64.
    [8] H.-C. Chen and D. H.-C. Du, “Path sensitization in critical path problem," IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 12, pp. 196-207, 1993.
    [9] Y.-C. Chen, S. Eachempati, C.-Y. Wang, S. Datta, Y. Xie, and V. Narayanan, “Automated mapping for recon_gurable single-electron transistor arrays," in Proc. Design Automation
    Conf., 2011, pp. 878-883.
    [10] Y.-T. Chung and J.-H. R. Jiang, “Functional timing analysis made fast and general," in Proc. Design Automation Conf., 2012, pp. 1055-1060.
    [11] M. L. Dertouzos, Threshold Logic: A Synthesis Approach. M.I.T. Press, 1965.
    [12] S. Devadas, K. Keutzer, and S. Malik, “Delay computation in combinational logic circuits: Theory and algorithms," in Proc. Int. Conf. Computer-Aided Design, 1991, pp. 176-179.
    [13] D.-C. Du, S.-C. Yen, and S. Ghanta, “On the general false path problem in timing analysis," in Proc. Design Automation Conf., 1989, pp. 555-560.
    [14] S. H. Gerez, Algorithms for VLSI Design Automation. John Wiley & Sons, 1997.
    [15] T. Gowda and S. Vrudhula, “Decomposition based approach for synthesis of multi-level
    threshold logic circuits," in Proc. Asia and South Paci_c Design Automation Conf., 2008, pp. 125-130.
    [16] T. Gowda, S. Vrudhula, and G. Konjevod, “Combinational equivalence checking for threshold logic circuits," in Proc. Great Lake Symp. VLSI, 2007, pp. 102-107.
    [17] T. Gowda, S. Vrudhula, and G. Konjevod, “A non-ilp based threshold logic synthesis methodology," in Proc. Int. Workshop on Logic and Synthesis, 2007, pp. 222-229.
    [18] T. Gowda, S. Vrudhula, N. Kulkarni, and K. Berezowski, “Identi_cation of threshold functions and synthesis of threshold networks," IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 30, pp. 665-677, 2011.
    [19] P. Gupta, R. Zhang, and N. K. Jha, “Automatic test generation for combinational threshold logic networks," IEEE Trans. VLSI Systems, vol. 16, pp. 1035-1045, 2008.
    [20] D. Hampel and R. O. Winder, “Threshold logic," IEEE Spectrum, vol. 8, pp. 32-39, 1971.
    [21] R. B. S. Hitchcock, “Timing veri_cation and the timing analysis program," in Proc. Design
    Automation Conf., 1982, pp. 594-604.
    [22] S. L. Hurst, “Sequential circuits using threshold logic gates," Int. J. of Electronics, vol. 29, pp. 495-499, 1970.
    [23] M. G. Johnson, “A symmetric cmos nor gate for high-speed applications," IEEE. J. Solid-State Circuits, vol. 23, pp. 1233-1236, 1988.
    [24] Z. Kohavi, Switching and Finite Automata Theory. McGraw-Hill College, 1978.
    [25] Y. Kukimoto and R. Brayton, “Exact required time analysis via false path detection," in Proc. Design Automation Conf., 1997, pp. 220-225.
    [26] P.-Y. Kuo, C.-Y. Wang, and C.-Y. Huang, “On rewiring and simpli_cation for canonicity in threshold logic circuits," in Proc. Int. Conf. Computer-Aided Design, 2011, pp. 396-403.
    [27] Y.-M. Kuo, Y.-L. Chang, and S.-C. Chang, “E_cient boolean characteristic function for timed automatic test pattern generation," IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 28, pp. 417-425, 2009.
    [28] C. Lageweg, S. Cotofana, and S. Vassiliadis, “A linear threshold gate implementation in single electron technology," in Proc. Comput. Soc. Workshop VLSI, 2001, pp. 93-98.
    [29] L. A. Lev, A. Charnas, M. Tremblay, A. R. Dalal, B. A. Frederick, C. R. Srivatsa, D. Greenhill, D. L. Wendell, D. D. Pham, E. Anderson, H. K. Hingarh, I. Razzack, J. M. Kaku, K. Shin, M. E. Levitt, M. Allen, P. A. Ferolito, R. I. Bartolotti, R. K. Yu, R. J. Melanson, S. I. Shah, S. Nguyen, S. S. Mitra, V. R. V. Ganesan, and W. J. de Lange, “A 64-b microprocessor with multimedia support," IEEE J. Solid-State Circuits, vol. 30, pp. 1227-1238, 1995.
    [30] P. C. McGeer and R. K. Brayton, “E_cient algorithms for computing the longest viable path in a combinational network," in Proc. Design Automation Conf., 1989, pp. 561-567.
    [31] P. C. McGeer and R. K. Brayton, Integrating Functional and Temporal Domains in Logic Design. Springer, 1991.
    [32] S. Muroga, Threshold Logic and its Applications. John Wiley & Sons, 1972.
    [33] S. D. Na_ziger, G. Colon-Bonet, T. Fischer, R. Reidlinger, T. J. Sullivan, and T. Grutkowski, “The implementation of the itanium 2 microprocessor," IEEE. J. Solid-State Circuits, vol. 37, pp. 1448-1460, 2002.
    [34] C. Pacha, P. Glosekotter, K. Goser, W. Prost, U. Auer, , and F. Tegude, “Resonant tunneling device logic circuit," DortmundGerhard-Mercator University of Duisburg, Germany, Tech. Rep., 1999.
    [35] M. Padure, C. Dan, S. Cotofana, M. Bodea, and S. Vassiliadis, “Capacitive threshold logic: A designer perspective," in Proc. Int. Semiconductor Conf., 1999, pp. 81-94.
    [36] M. Perkowski and A. Mishchenko, “Logic synthesis for regular fabric realized in quantum dot cellular automata," in Proc. Int. J. Multiple-Valued Logic and Soft Comput., 2004, pp. 768-773.
    [37] S. Perremans, L.Claesen, and H. DeMan, “Static timing analysis of dynamically sensitizable paths," in Proc. Design Automation Conf., 1989, pp. 568-573.
    [38] L. G. Silva, J. P. M. Silva, L. M. Silveira, and K. A. Sakallah, “Satis_ability models and algorithms for circuit delay computation," ACM Trans. on Design Automation of Electronic Systems, vol. 7, pp. 137-158, 2002.
    [39] P. Venkataramani, S. Srivastava, and S. Bhanja, “Sequential circuit design in quantum-dot cellular automata," in Proc. Nanotechnology Conf., 2008, pp. 534-537.
    [40] R. O. Winder, “Threshold logic," Ph.D. dissertation, Princeton University, Princeton, NJ, 1962.
    [41] S. H.-C. Yen, D. H.-C. Du, and S. Ghanta, “E_cient algorithms for extracting the k most critical paths in timing analysis," in Proc. Design Automation Conf., 1989, pp. 649-654.
    [42] R. Zhang, P. Gupta, L. Zhong, and N. K. Jhas, “Threshold network synthesis and optimization and its application to nanotechnologies," IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 24, pp. 107-118, 2005.
    [43] Y. Zheng, M. S. Hsiao, and C. Huang, “Sat-based equivalence checking of threshold logic designs for nanotechnologies," in Proc. Great Lake Symp. VLSI, 2008, pp. 225-230.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE