簡易檢索 / 詳目顯示

研究生: 徐慧馨
Huei-Shin Shiu
論文名稱: 氧化亞鐵硫桿菌及氧化硫硫桿菌之胞外聚合物對銅金屬蝕刻之研究
Etching of Copper by Extracellular Polymeric Substance from Thiobacillus ferrooxidans and Thiobacillus thiooxidans
指導教授: 賀陳弘
Hong Hocheng
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 76
中文關鍵詞: 氧化亞鐵硫桿菌氧化硫硫桿菌材料移除代謝物微生物加工
外文關鍵詞: Thiobacillus ferrooxidans, Thiobacillus thiooxidans, material removal, metabolite, biomachining, bioleaching
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文旨在針對微生物氧化亞鐵硫桿菌及氧化硫硫桿菌分泌之胞外聚合物對銅金屬進行蝕刻之研究。此二菌種對金屬有其特定的蝕刻能力,可對金屬進行加工。而其加工機制為菌體生長時會產生代謝物(胞外聚合物,EPS),此代謝物可將金屬氧化得到電子,菌體可於此過程中獲得所需能量。藉由此代謝過程,可對所需的工件進行加工。蝕刻過程中影響結果的因素有:微生物預培養時間、氧化亞鐵硫桿菌之EPS溶液中的三價鐵離子濃度、EPS溶液體積及銅試片面積等等,本研究探討不同參數與蝕刻行為對應之關係。
      研究中顯示,氧化亞鐵硫桿菌經過三天的預培養時間產生的EPS已足夠對銅造成蝕刻,蝕刻過程中初始速率極快,蝕刻效果比純粹使用微生物進行蝕刻更好,但受溶液中銅離子濃度限制,當銅離子濃度隨著時間提高,蝕刻量會達到飽和,適合用於微量加工之工件。蝕刻過程中可採用二價鐵離子及三價鐵離子的濃度變化作為蝕刻效率的指標。
      而氧化硫硫桿菌需八天的預培養時間,其EPS溶液對銅試片初始蝕刻速率較慢,但隨著時間逐漸加快,蝕刻速率隨之增加。可得到較高的總蝕刻量,適合需較大蝕刻量試片之加工。加工時氧化硫硫桿菌之EPS溶液中含有元素硫的成份,其功能為促進蝕刻作用的進行並能防止產生沉澱附著於試片上。


      This study uses extracellular polymeric substance (EPS) secreted by bacteria Thiobacillus ferrooxidans and Thiobacillus thiooxidans to etch the copper. These two bacteria have the ability of etching metal. The etching mechanism is based on the metabolite (EPS) from growing bacteria. The EPS can oxidize metal by acquiring electron, and bacteria obtain the necessary energy in the course. Through the metabolism, one can machine the work piece. The factors influencing etching results include the pre-cultivation time, the concentration of ferric ion in the EPS solution of Thiobacillus ferrooxidans, the area of copper, and volume of solution. This study explores the correlation between these parameters and etching behavior.
      In this study, the EPS of Thiobacillus ferrooxidans reaches maximum material removal rate after culture of 3 days. At the beginning of etching, the rate of etching is very fast, but the copper removal amount is limited by the concentration of copper ion in the solution. It is suitable for the work piece with small amount of machining. The indicator of material removal rate is the concentration of ferrous ion during the etching process.
      The initial material removal rate of the EPS of thiobacillus thiooxidans is slow, but it is faster and faster. The total copper removal amount is more than thiobacillus ferrooxidans. It is suitable for large amount of machining. There is sulfur powder in the solution when etching copper, which increases the rate of machining and prevent the residue on copper sample.

    目 錄 摘 要 I 目 錄 V 圖 目 錄 IX 表 目 錄 XII 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 第二章 文獻回顧 4 2.1 用於生物加工之菌種 4 2.2 使用胞外聚合物(EPS)之間接溶濾 7 2.3 實驗菌種選用及材料移除機制 8 2.3.1 氧化亞鐵硫桿菌 ( Thiobacillus ferrooxidans ) 8 2.3.2 氧化硫硫桿菌 ( Thiobacillus thiooxidans ) 11 第三章 實驗設備與方法 15 3.1 實驗設備器材與材料藥品 15 3.2 菌株培養及EPS純化 15 3.2.1 菌株活化及培養 15 3.2.2 EPS的取得及純化 16 3.3 氧化亞鐵硫桿菌之銅蝕刻實驗 17 3.3.1 菌體預培養時間與銅蝕刻量關係 17 3.3.2 胞外聚合物與菌體的蝕刻比較 18 3.3.3 EPS溶液體積與銅片面積對銅蝕刻量之影響 19 3.3.4 菌體產生之鐵離子濃度對蝕刻結果之影響 19 3.3.4.1. 菌株培養過程之鐵離子濃度 20 3.3.4.2. 試片蝕刻過程之鐵離子濃度 20 3.3.5 不同二價鐵離子濃度對菌體生長及銅蝕刻量之關係 21 3.3.5.1. 不同二價鐵離子濃度對菌體生長之影響 21 3.3.5.2. 不同二價鐵離子濃度對銅蝕刻量之影響 21 3.4 氧化硫硫桿菌之銅蝕刻實驗 22 3.4.1 菌體預培養時間與銅蝕刻量關係 22 3.4.2 胞外聚合物與菌體的蝕刻比較 22 3.4.3 EPS溶液體積與銅片面積對銅蝕刻量之影響 23 3.4.4 EPS溶液中硫粉含量對銅蝕刻量之影響 23 第四章 結果與討論 29 4.1 氧化亞鐵硫桿菌之銅蝕刻實驗 29 4.1.1 菌體預培養時間與銅蝕刻量關係 29 4.1.2 胞外聚合物與菌體的蝕刻比較 29 4.1.3 EPS溶液體積與銅片面積對銅蝕刻量之影響 30 4.1.4 菌體產生之鐵離子濃度對蝕刻結果之影響 31 4.1.4.1. 菌株培養過程之鐵離子濃度 31 4.1.4.2. 銅試片蝕刻過程之鐵離子濃度 31 4.1.5 不同二價鐵離子濃度對銅蝕刻量之關係 32 4.1.5.1. 不同二價鐵離子濃度對菌體生長之影響 32 4.1.5.2. 不同二價鐵離子濃度對銅蝕刻量之影響 33 4.2 氧化硫硫桿菌之銅蝕刻實驗 33 4.2.1 菌體預培養時間與銅蝕刻量關係 33 4.2.2 胞外聚合物與菌體的蝕刻比較 34 4.2.3 EPS溶液體積與銅片面積對銅蝕刻量之影響 35 4.2.4 EPS溶液中硫粉含量對銅蝕刻量之影響 35 4.3 氧化亞鐵硫桿菌與氧化硫硫桿菌之銅蝕刻比較 36 4.3.1 氧化亞鐵硫桿菌與氧化硫硫桿菌之銅試片蝕刻量比較 36 4.3.2 氧化亞鐵硫桿菌與氧化硫硫桿菌之EPS及菌體綜合比較 37 第五章 結論與未來工作 67 5.1 結論 67 5.2 未來工作 68 參考文獻 70 圖 目 錄 圖 2-1 五種用來加工金屬的微生物;(a) 氧化亞鐵硫桿菌,直徑約0.5 μm,長度約1 - 2 μm [19],(b) 氧化硫硫桿菌,直徑約0.7μm,長度約2μm [44],(c) Geobacter metallireducens,直徑約0.5μm,長度約2μm [18],(d) Shewanella oneidensis,直徑約0.7μm,長度約2 - 3μm [19],(e) Desulfovibrio,直徑約0.7 - 1μm,長度約2 - 4μm [20] 13 圖 2-2 氧化亞鐵硫桿菌的細胞膜與其氧化還原反應 [4] 14 圖 2-3 生物加工程序的離子循環模型 [4] 14 圖 4-1氧化亞鐵硫桿菌之EPS溶液不同預培養時間對銅試片蝕刻量之曲線圖;(a) 0~6小時,(b) 0~120小時。 50 圖 4-2 氧化亞鐵硫桿菌胞外聚合物與菌體對銅試片的蝕刻量之曲線圖,(1) 無菌培養液,(2) EPS溶液,(3) 培養三天後的菌體置換新鮮培養液,(4) 培養三天後的菌液;(a) 0~6小時,(b) 0~96小時 51 圖 4-3氧化亞鐵硫桿菌之不同EPS溶液體積與銅片面積的蝕刻曲線圖;(a) 0~6小時,(b) 0~96 小時 52 圖 4-4氧化亞鐵硫桿菌之EPS溶液體積與銅片面積對銅試片六小時後之蝕刻量;(a) EPS溶液體積分組之3D長條圖,(b) EPS溶液體積分組之第六小時蝕刻量,(c) 銅試片面積分組之3D長條圖,(d) 銅試片面積分組之第六小時蝕刻量 54 圖 4-5 氧化亞鐵硫桿菌預培養過程中Fe2+及Fe3+之濃度關係曲線圖 55 圖 4-6 氧化亞鐵硫桿菌之EPS溶液對銅試片的蝕刻量及蝕刻過程中Fe2+、Fe3+之濃度關係圖 55 圖 4-7 使用不同FeSO4濃度培養之氧化亞鐵硫桿菌在培養過程中的Fe2+與Fe3+濃度 56 圖 4-8使用不同FeSO4濃度培養之氧化亞鐵硫桿菌在培養過程中的Fe2+消耗率 56 圖 4-9使用不同FeSO4濃度培養之氧化亞鐵硫桿菌之EPS溶液對銅試片蝕刻量之曲線圖;(a) 0~6小時,(b) 0~96小時 57 圖 4-10使用不同FeSO4濃度培養之氧化亞鐵硫桿菌之EPS溶液對銅試片蝕刻時Fe2+及Fe3+濃度;(a) 0~6小時,(b) 0~96小時 58 圖 4-11氧化硫硫桿菌之EPS溶液不同預培養時間對銅試片蝕刻量之曲線圖 59 圖 4-12氧化硫硫桿菌胞外聚合物與菌體對銅試片蝕刻量之比較圖(a) 0~14小時,(b) 0~268小時;(1)培養八天後的菌液,(2) 培養八天後的菌液加入等濃度的硫粉,(3)培養八天後的菌體置換新鮮培養液,(4)EPS溶液,(5)無菌培養液 60 圖 4-13氧化硫硫桿菌之不同EPS溶液體積與銅片面積蝕刻量之曲線圖 61 圖 4-14氧化硫硫桿菌之不同EPS溶液體積與銅片面積14小時後之蝕刻量;(a) EPS溶液體積分組之3D長條圖,(b) EPS溶液體積分組之第14小時蝕刻量,(c) 銅試片面積分組之3D長條圖,(d) 銅試片面積分組之第14小時蝕刻量 63 圖 4-15使用不同硫粉含量的氧化硫硫桿菌之EPS溶液對銅試片蝕刻量之曲線圖;(a) 0~15小時,(b)0~24小時 64 圖 4-16氧化亞鐵硫桿菌與氧化硫硫桿菌之EPS溶液及培養液對銅蝕刻量之關係圖 65 圖 4-17氧化亞鐵硫桿菌與氧化硫硫桿菌之EPS溶液對銅蝕刻量扣除培養基作用之關係圖 65 圖 4-18 氧化亞鐵硫桿菌與氧化硫硫桿菌之EPS溶液及菌體對銅試片蝕刻量之比較 66 表 目 錄 表 2-1生物分類 12 表 3-1 實驗儀器設備 25 表 3-2 實驗材料及藥品 26 表 3-3 氧化亞鐵硫桿菌 26 表 3-4 氧化硫硫桿菌 27 表 3-5 培養基 510 27 表 3-6 Wolfe's 礦物溶液 28 表 3-7 培養基 317 28 表 4-1 氧化亞鐵硫桿菌之EPS溶液不同預培養時間對銅試片之蝕刻量 38 表 4-2 氧化亞鐵硫桿菌胞外聚合物與菌體對銅試片的蝕刻量比較;(1)無菌培養液,(2)EPS溶液,(3)培養三天後的菌體置換新鮮培養液,(4)培養三天後的菌液 39 表 4-3 氧化亞鐵硫桿菌之不同EPS溶液體積與銅片面積的蝕刻量 40 表 4-4 氧化亞鐵硫桿菌培養過程中滴定所消耗的K2Cr2O7量及鐵離子濃度 41 表 4-5 氧化亞鐵硫桿菌之EPS溶液對銅試片蝕刻過程中滴定所消耗的K2Cr2O7量 41 表 4-6 氧化亞鐵硫桿菌對銅試片蝕刻量及蝕刻過程中Fe2+、Fe3+之濃度,由Fe2+濃度換算銅蝕刻量之理論值 42 表 4-7 使用不同FeSO4濃度培養之氧化亞鐵硫桿菌在培養過程中滴定所消耗的K2Cr2O7量 42 表 4-8 使用不同FeSO4濃度培養之氧化亞鐵硫桿菌在培養過程中的Fe2+濃度 43 表 4-9 使用不同FeSO4濃度培養之氧化亞鐵硫桿菌在培養過程中的Fe3+濃度 43 表 4-10 使用不同FeSO4濃度培養之氧化亞鐵硫桿菌在培養過程中的Fe2+消耗率 43 表 4-11 使用不同FeSO4濃度培養之氧化亞鐵硫桿菌之EPS溶液對銅試片蝕刻量 44 表 4-12使用不同FeSO4濃度培養之氧化亞鐵硫桿菌之EPS溶液對銅試片蝕刻時Fe2+之濃度 44 表 4-13 使用不同FeSO4濃度培養之氧化亞鐵硫桿菌之EPS溶液對銅試片蝕刻時Fe3+之濃度 45 表 4-14氧化硫硫桿菌之EPS溶液不同預培養時間對銅試片之蝕刻量 46 表 4-15 氧化硫硫桿菌胞外聚合物與菌體對銅試片的蝕刻量比較;(1)培養八天後的菌液,(2) 培養八天後的菌液加入等濃度的硫粉,(3)培養八天後的菌體置換新鮮培養液,(4)EPS溶液,(5)無菌培養液 47 表 4-16氧化硫硫桿菌之不同EPS溶液體積與銅片面積的蝕刻量 48 表 4-17 使用不同硫粉含量的氧化硫硫桿菌之EPS溶液對銅試片之蝕刻量 49

    [1] Y. Uno, T. Kaneeda, and S. Yokomizo, (1993) “Fundamental study on biomachining (machining of metals by Thiobacillus ferrooxidans).” Transactions of the Japan Society of Mechanical Engineers, Part C, Vol. 59, pp. 3199-3204.
    [2] Y. Uno, T. Kaneeda, and S. Yokomizo, (1996a) “Fundamental study on biomachining (machining of metals by Thiobacillus ferrooxidans).” JSME International Journal, Series C, Vol. 39, pp. 837-842.
    [3] Y. Uno, T. Kaneeda, S. Yokomizo, and T. Yoshimura, (1996b) “Fundamental study on electric field assisted biomachining,” Journal of the Japan Society for Precision Engineering, Vol. 62, pp. 540-543.
    [4] D. Zhang, and Y. Li, (1998), “Studies on kinetics and thermodynamics of biomachining pure copper.” Science in China Series C Life Sciences, Vol. 42, pp. 57-62.
    [5] M. Kumada, T. Kawakado, S. Kobuchi, Y. Uno, S. Maeda, H. and Miyuki, (2001) “Investigations of fine biomachining of metals by using microbially influenced corrosion - Differences between steel and copper in metal biomachining by using Thiobacillus Ferrooxidans.” Zairyo to Kankyo/ Corrosion Engineering, Vol. 50, pp. 411-417.
    [6] S. Viamajala, B. Peyton, and J. Petersen, (2003) “Modeling chromate reduction in Shewanella oneidensis MR-1: development of a novel dual-enzyme kinetic model,” Biotechnology and Bioengineering, Vol. 83, No. 7, pp. 790-797.
    [7] H. Dinh, J. Kuever, M. Mussmann, A. Hassel, M. Stratmann and F. Widdel, (2004) “Iron corrosion by novel anaerobic microorganisms.” Nature, Vol. 427(6977), pp. 829-832.
    [8] Y. Kurosaki, M. Matsui, Y. Nakamura, K. Murai, and T. Kimura, (2003) “Material processing using microorganisms (An investigation of microbial action on metals).” JSME International Journal, Series C: Mechanical Systems, Machine Elements and Manufacturing, Vol. 46, pp. 322-330.
    [9] G. Olson, (1991) “Rate of pyrite bioleaching by Thiobacillus ferrooxidans: Results of an interlaboratory comparison.” Applied Environmental Microbiology, Vol. 57 (3), pp. 642–644.
    [10] Y.Konishi, H. Kubo, and S. Asai, (1992) “Bioleaching of zinc sulfide concentrate by Thiobacillus ferrooxidans,” Biotechnology and Bioengineering, Vol. 39, pp.66-74.
    [11] C. Gomez, M. Blazquez, and A. Ballester, (1999) “Bioleaching of a Spanish complex sulphide ore bulk concentrate.” Minerals Engineering, Vol. 12, pp. 93-106.
    [12] D. Bond, D. Holmes L. Tender and D. R. Lovley (2002) “Electrode-reducing microorganisms that harvest energy from marine sediments,” Science. 295:483-5.
    [13] D. R. Lovley, E. Phillips, Y. Gorby, and E. Landa, (1991) “Microbial reduction of uranium,” Nature, Vol. 350, pp. 413-416.
    [14] D. R. Lovley, (2003) “Cleaning up with genomics: applying molecular biology to bioremediation.” Nature Reviews, Vol. 1, pp. 35-44.
    [15] S. Chaudhuri, and D.R. Lovley, (2003) “Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells.” Nature Biotechnology, Vol. 21, No. 10, pp. 1229-1232.
    [16] H.L. Ehrlich, (1990) Geomicrobiology, 2nd edition. Marcel Dekker, Inc.New York, NY
    [17] Courtesy of Water Services Ltd http://www.arvanitakis.com
    [18] S. Childers, S. Ciufo, and D. R. Lovley., (2002) “Geobacter metallireducens accesses insoluble Fe(III) oxide by chemotaxis, ” Nature, 2002 Apr 18;416(6882):767-9
    [19] T. Daulton, B. Little, K. Lowe, and J. Jones-Meehan, (2002) “Electron energy loss spectroscopy techniques for the study of microbial chromium(VI) reduction,” J Microbiol Methods, 2002 Jun;50(1):39-54.
    [20] R. McDougall, J. Robson, D. Paterson, and W. Tee, (1997) “Bacteremia caused by a recently described novel Desulfovibrio species,” J Clin Microbiol, 1997 Jul;35(7):1805-8.
    [21] Liu HL, Chiu CW, and Cheng YC., (2003) “The effects of metabolites from the indigenous Acidithiobacillus thiooxidans and temperature on the bioleaching of cadmium from soil.” Biotechnol Bioeng, 2003 Sep 20;83(6):638-45.
    [22] I. Ortiz-Bernad, R. T. Anderson, H. A. Vrionis, and D.R. Lovley, (2004) “Vanadium respiration by Geobacter metallireducens: novel strategy for in situ removal of vanadium from groundwater.” Appl Environ Microbiol, 2004 May;70(5):3091-5.
    [23] J. M. Senko, and J. F. Stolz, (2001) “Evidence for iron-dependent nitrate respiration in the dissimilatory iron-reducing bacterium Geobacter metallireducens.” Appl Environ Microbiol. 2001 Aug;67(8):3750-2.
    [24] S. S. Middleton, R. B. Latmani, M. R. Mackey, M. H. Ellisman, B. M. Tebo, and C. S. Criddle, (2003) “Cometabolism of Cr(VI) by Shewanella oneidensis MR-1 produces cell-associated reduced chromium and inhibits growth.” Biotechnol Bioeng, 2003, 83(6):627-37.
    [25] S. Viamajala, B. M. Peyton, R. K. Sani, W. A. Apel, and J. N. Petersen, (2004) “Toxic effects of chromium(VI) on anaerobic and aerobic growth of Shewanella oneidensis MR-1.” Biotechnol Prog, 2004, 20(1):87-95.
    [26] S. Viamajala, B. M. Peyton, W. A. Apel, and J. N. Petersen, (2002)“Chromate/nitrite interactions in Shewanella oneidensis MR-1: evidence for multiple hexavalent chromium [Cr(VI)] reduction mechanisms dependent on physiological growth conditions.” Biotechnol Bioeng, 2003, 83(7):790-7.
    [27] C. Schwalb, S. K. Chapman, and G. A. Reid, (2003) “The tetraheme cytochrome CymA is required for anaerobic respiration with dimethyl sulfoxide and nitrite in Shewanella oneidensis.” Biochemistry, 2003, 42(31):9491-7.
    [28] W. Carpentier, K. Sandra, I. D. Smet, A. Brige, L. D. Smet, and J. V. Beeumen, (2003) “Microbial reduction and precipitation of vanadium by Shewanella oneidensis.” Appl Environ Microbiol, 2003, 69(6):3636-9.
    [29] C. Liu, Y. A. Gorby, J. M. Zachara, J. K. Fredrickson, and C. F. Brown, (2002) “Reduction kinetics of Fe(III), Co(III), U(VI), Cr(VI), and Tc(VII) in cultures of dissimilatory metal-reducing bacteria.” Biotechnol Bioeng, 2002, 80(6):637-49.
    [30] T. Rohwerder, T. Gehrke, K. Kinzler, and W. Sand, (2003) “Bioleaching review part A: Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation.” Applied Microbiology Biotechnol, 63, 239-248.
    [31] A. Schippers, P.G. Jozsa, and W. Sand, (1996) “Sulfur chemistry in bacterial leaching of pyrite.” Appl. Environ. Microbiol, 52, 3424-3431.
    [32] W. Sand, T. Gehrake, P.G. Jozsa, and A. Schippers, (1999) “Direct versus indirect bioleaching.” In: Amils, R., Ballester, A. (Eds.) Biohyrodrometallurgy and the Environment Toward the Mining of the 21st Century, Part A. Elservier, Amsterdam, 27-49.
    [33] W. Sand, T. Gehrake, P.G. Jozsa, and A. Schippers, (2001) “(Bio)chemistry of bacterial leaching-direct vs indirect bioleaching.” Hydrometallurgy, 51, 115-129.
    [34] D. E. Rawlings, (2002) “Heavy metal mining using microbes.” Annu. Rev. Microbiology, 56, 65-91.
    [35] T. Gehrke, R. Hallmann, and W. Sand, (1995) “Importance of exopolymers from Thiobacillus ferroxidans and Leptospirillum ferrooxidans for bioleaching.” In: Jerez C. A., Vargas T., Toledo H., Wiertz J. V. (Eds.), Biohydrometallurgical Processing, University of Chile, Stantiago 1, 1-11
    [36] B. Escobar, G. Huerta, and J. Rubio, (1997) “Short communication: influence of LPS on the attachment of Thiobacillus ferrooxidans to minerals.” W. J. Microbiol. Biochem, 13, 593-594.
    [37] C. Poglian, and E. Donati, (1999) “The role of exopolymers in the bioleaching of a non-ferrous metal sulphide.” J. Ind. Microbiol. Biotech, 22, 88-92.
    [38] P. T. Hoa, L. Nair, and C. Visvanathan, (2003) “The effect of nutrients on extracellular polymeric substance production and its in fluence on sludge properties.” Water SA, 29 (4), 437-442
    [39] N. Yoshida, and Y. Murooka, (1994) “Adsorption of bacterial cells to crystal particles of heavy metals: role electrostatic interaction.” J. Ferment. Bioeng, 77, 636-641.
    [40] R. C. Blake II, M. M. Lyles, and R. C. Simmons, (1995) “Morphological and physical aspects of attachment of Thiobacillus ferrooxidans.” In: Jerez, C.A., Vargas, T., Toledo, H., Wiertz, J.V. (Eds.), Biohydrometallurgical Processing, vol. 1. University of Chile, Santiago, 13-22.
    [41] http://www.arvanitakis.com/gr/c/bac_gal/thiobacillus_thiooxidans.htm
    [42] W. Sand , T. Gehrke, (2006) “Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria” Research in Microbiology, Vol. 157, pp. 49–56.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE