研究生: |
廖耘甄 Liao, Yun-Jhen |
---|---|
論文名稱: |
氧化鋅奈米線之合成與其在表面電漿雷射應用 Synthesis of ZnO nanowires for application in surface plasmon polariton lasers |
指導教授: |
陳力俊
Chen, Lih-Juann |
口試委員: |
果尚志
Gwo, Shangjr 呂明諺 Lu, Ming-Yen |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 68 |
中文關鍵詞: | 表面電漿雷射 、氧化鋅 、奈米線 |
外文關鍵詞: | Surface plasmon polariton laser, Zinc oxide, Nanowire |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氧化鋅由於具備獨特的光、電和壓電特性,且應用廣泛,是目前最受矚目的材料之一。氧化鋅為一寬能隙的半導體材料,其室溫下能隙約為3.3eV,所發光波段為紫外光波段;另外由於氧化鋅具有極大的激子束縛能(exciton binding energy),大約為60 meV,遠大於室溫熱擾動能量(26 meV),因此氧化鋅作為研究室溫操作雷射是一個相當具有吸引力的材料。
表面電漿雷射是一種可以突破傳統光學繞射極限的新型奈米半導體雷射,藉由激發金屬表面的自由電子集體振盪產生表面電漿子,使表面電漿子可以在金屬和介電質的界面形成奈米等級共振腔。
本研究以三區加熱的擴散爐成長出單晶的氧化鋅奈米線,將氧化鋅奈米線作為增益介質,並放置於隔著一層介電質的高品質金屬鋁膜上,形成「金屬-氧化物-半導體」結構,未來相當具有潛力和矽積體電路做結合,形成光積體電路。
本論文主要是探討氧化鋅奈米線電漿雷射在鋁金屬膜上的雷射特性,並改變氧化層的厚度,進而得到低雷射閥值的奈米雷射。
ZnO is one of the most promising optical materials and allows lasing in ZnO nanowires at room temperature. Plasmonic lasers are potentially useful in applications in biosensing, photonic circuits, and high-capacity signal processing. In this work, we combine a ZnO nanowire and single-crystalline metal films to fabricate Fabry-Perot type surface plasmon polariton (SPP) lasers to overcome the diffraction limit of conventional optics (λ/2n)3. High quality ZnO nanowires were synthesized by a vapor phase transport process via catalyzed growth. The ZnO nanowires were placed on a single-crystalline Al film grown with molecular beam epitaxy. Al2O3 deposited by atomic layer deposition was inserted between ZnO nanowires and Al film. The plasmonic laser is of metal-oxide-semiconductor (MOS) structure which might be compatible in processing of integrated silicon devices. The thickness effects of insulating layer on lasing threshold condition of the SPP nanolasers in the subwavelength regime were investigated. It was found that optimal thickness of dielectric layer deposited will lead to lower lasing threshold owing to the higher gain factor and lower metal loss.
Besides, we also discuss the optical properties of photonic lasers. ZnO nanowires are used as gain medium which are synthesized by hydrothermal method.
[1] 'Plenty of room' revisited, Nature Nanotechnology, 4 (2009) 781-781.
[2] A.P. Alivisatos, Semiconductor Clusters, Nanocrystals, and Quantum Dots, Science, 271 (1996) 933-937.
[3] J.M. Krans, J.M. van Ruitenbeek, V.V. Fisun, I.K. Yanson, L.J. de Jongh, The signature of conductance quantization in metallic point contacts, Nature, 375 (1995) 767-769.
[4] J.M. Wolfe, S.J. Butcher, C. Lee, M. Hyle, Changing your mind: on the contributions of top-down and bottom-up guidance in visual search for feature singletons, Journal of Experimental Psychology: Human Perception and Performance, 29 (2003) 483.
[5] J.P. Terpenny, B.O. Nnaji, J. Bohn, Blending top-down and bottom-up approaches in conceptual design, in: Proceedings of the Seventh Industrial Engineering Research Conference, 1998.
[6] K.E. Drexler, M. Minsky, Engines of creation, Fourth Estate London, 1990.
[7] J. Hu, T.W. Odom, C.M. Lieber, Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes, Accounts of chemical research, 32 (1999) 435-445.
[8] Y. Cui, C.M. Lieber, Functional nanoscale electronic devices assembled using silicon nanowire building blocks, Science, 291 (2001) 851-853.
[9] Y. Huang, X. Duan, Y. Cui, L.J. Lauhon, K.-H. Kim, C.M. Lieber, Logic gates and computation from assembled nanowire building blocks, Science, 294 (2001) 1313-1317.
[10] W. Han, S. Fan, Q. Li, Y. Hu, Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction, Science, 277 (1997) 1287-1289.
[11] J. Hu, L.-S. Li, W. Yang, L. Manna, L.-W. Wang, A.P. Alivisatos, Linearly polarized emission from colloidal semiconductor quantum rods, Science, 292 (2001) 2060-2063.
[12] W.I. Park, G.C. Yi, M. Kim, S.J. Pennycook, Quantum confinement observed in ZnO/ZnMgO nanorod heterostructures, Advanced Materials, 15 (2003) 526-529.
[13] C. Dekker, Carbon nanotubes as molecular quantum wires, Physics Today, 52 (1999) 22-28.
[14] Y. Zhang, K. Suenaga, C. Colliex, S. Iijima, Coaxial nanocable: silicon carbide and silicon oxide sheathed with boron nitride and carbon, Science, 281 (1998) 973-975.
[15] Y. Zhang, T. Ichihashi, E. Landree, F. Nihey, S. Iijima, Heterostructures of single-walled carbon nanotubes and carbide nanorods, Science, 285 (1999) 1719-1722.
[16] Z.L. Wang, Nanowires and Nanobelts: Materials, Properties and Devices. Volume 1: Metal and Semiconductor Nanowires, Springer Science & Business Media, 2013.
[17] D.A.B. Miller, Rationale and challenges for optical interconnects to electronic chips, Proceedings of the IEEE, 88 (2000) 728-749.
[18] M. Fox, Optical properties of solids, Clarendon press, Oxford, 2002.
[19] R.F. Oulton, V.J. Sorger, D. Genov, D. Pile, X. Zhang, A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation, Nature Photonics, 2 (2008) 496-500.
[20] D.J. Bergman, M.I. Stockman, Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems, Physical Review Letters, 90 (2003) 027402.
[21] Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T.C. Sum, C.M. Lieber, Q. Xiong, A room temperature low-threshold ultraviolet plasmonic nanolaser, Nature Communications, 5 (2014) 4953.
[22] M.I. Stockman, Spasers explained, Nature Photonics, 2 (2008) 327-329.
[23] W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics, Nature, 424 (2003) 824-830.
[24] S.A. Maier, Plasmonics: fundamentals and applications, Springer Science & Business Media, 2007.
[25] A. Otto, Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection, Zeitschrift für Physik, 216 (1968) 398-410.
[26] R. Ritchie, E. Arakawa, J. Cowan, R. Hamm, Surface-plasmon resonance effect in grating diffraction, Physical Review Letters, 21 (1968) 1530.
[27] J. Sambles, G. Bradbery, F. Yang, Optical excitation of surface plasmons: an introduction, Contemporary physics, 32 (1991) 173-183.
[28] R.F. Oulton, V.J. Sorger, T. Zentgraf, R.M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, Plasmon lasers at deep subwavelength scale, Nature, 461 (2009) 629-632.
[29] Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C.E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, Plasmonic nanolaser using epitaxially grown silver film, Science, 337 (2012) 450-453.
[30] Y.H. Chou, B.T. Chou, C.K. Chiang, Y.Y. Lai, C.T. Yang, H. Li, T.R. Lin, C.C. Lin, H.C. Kuo, S.C. Wang, T.C. Lu, Ultrastrong Mode Confinement in ZnO Surface Plasmon Nanolasers, ACS Nano, 9 (2015) 3978-3983.
[31] Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoc, A comprehensive review of ZnO materials and devices, Journal of Applied Physics, 98 (2005) 11.
[32] Z.L. Wang, Nanostructures of zinc oxide, Materials Today, 7 (2004) 26-33.
[33] G.-C. Yi, C. Wang, W.I. Park, ZnO nanorods: synthesis, characterization and applications, Semiconductor Science and Technology, 20 (2005) S22.
[34] Z.W. Pan, Z.R. Dai, Z.L. Wang, Nanobelts of semiconducting oxides, Science, 291 (2001) 1947-1949.
[35] P.X. Gao, Y. Ding, W. Mai, W.L. Hughes, C. Lao, Z.L. Wang, Conversion of zinc oxide nanobelts into superlattice-structured nanohelices, Science, 309 (2005) 1700-1704.
[36] Y. Gu, I.L. Kuskovsky, M. Yin, S. O’Brien, G. Neumark, Quantum confinement in ZnO nanorods, Applied Physics Letters, 85 (2004) 3833-3835.
[37] M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Room-temperature ultraviolet nanowire nanolasers, Science, 292 (2001) 1897-1899.
[38] Y.-H. Chou, Y.-M. Wu, K.-B. Hong, B.-T. Chou, J.-H. Shih, Y.-C. Chung, P.-Y. Chen, T.-R. Lin, C.-C. Lin, S.-D. Lin, High-operation-temperature plasmonic nanolasers on single-crystalline aluminum, Nano Letters, 16 (2016) 3179-3186.
[39] S. Kawata, Y. Inouye, P. Verma, Plasmonics for near-field nano-imaging and superlensing, Nature Photonics, 3 (2009) 388-394.
[40] E. Ozbay, Plasmonics: merging photonics and electronics at nanoscale dimensions, science, 311 (2006) 189-193.
[41] N. Fang, H. Lee, C. Sun, X. Zhang, Sub–diffraction-limited optical imaging with a silver superlens, Science, 308 (2005) 534-537.
[42] G. Davy, K.G. Stephen, Aluminium plasmonics, Journal of Physics D: Applied Physics, 48 (2015) 184001.
[43] Y. Wu, P. Yang, Direct observation of vapor− liquid− solid nanowire growth, Journal of the American Chemical Society, 123 (2001) 3165-3166.
[44] S.N. Mohammad, Analysis of the vapor–liquid–solid mechanism for nanowire growth and a model for this mechanism, Nano Letters, 8 (2008) 1532-1538.
[45] M.-T. Chen, M.-P. Lu, Y.-J. Wu, J. Song, C.-Y. Lee, M.-Y. Lu, Y.-C. Chang, L.-J. Chou, Z.L. Wang, L.-J. Chen, Near UV LEDs made with in situ doped pn homojunction ZnO nanowire arrays, Nano letters, 10 (2010) 4387-4393.
[46] F. Cheng, P.-H. Su, J. Choi, S. Gwo, X. Li, C.-K. Shih, Epitaxial growth of atomically smooth aluminum on silicon and its intrinsic optical properties, ACS Nano, 10 (2016) 9852-9860.
[47] N. Niu, T.-L. Liu, I. Aharonovich, K.J. Russell, A. Woolf, T.C. Sadler, H.A. El-Ella, M.J. Kappers, R.A. Oliver, E.L. Hu, A full free spectral range tuning of pin doped gallium nitride microdisk cavity, Applied Physics Letters, 101 (2012) 161105.
[48] H. Yokoyama, Physics and device applications of optical microcavities, Science, 256 (1992) 66.
[49] S. Strauf, F. Jahnke, Single quantum dot nanolaser, Laser & Photonics Reviews, 5 (2011) 607-633.
[50] J. Evertsson, F. Bertram, F. Zhang, L. Rullik, L.R. Merte, M. Shipilin, M. Soldemo, S. Ahmadi, N. Vinogradov, F. Carlà, J. Weissenrieder, M. Göthelid, J. Pan, A. Mikkelsen, J.O. Nilsson, E. Lundgren, The thickness of native oxides on aluminum alloys and single crystals, Applied Surface Science, 349 (2015) 826-832.
[51] H.-Y. Chen, Y.-C. Yang, H.-W. Lin, S.-C. Chang, S. Gwo, Polarized photoluminescence from single GaN nanorods: Effects of optical confinement, Optics Express, 16 (2008) 13465-13475.
[52] P. Ginzburg, A.V. Zayats, Linewidth enhancement in spasers and plasmonic nanolasers, Optics express, 21 (2013) 2147-2153.
[53] 吳民耀, 劉威志, 表面電漿子理論與模擬, 物理雙月刊, 28 (2006) 486-496.