簡易檢索 / 詳目顯示

研究生: 張培哲
Chang, Pei Che
論文名稱: 有損耗層波導之理論探討
Theoretical Study of a Cylindrical Waveguide with a Lossy Layer
指導教授: 朱國瑞
Chu, Kwo Ray
口試委員: 朱國瑞
陳仕宏
張存續
陳寬任
劉偉強
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 53
中文關鍵詞: 廣義色散方程式有損塗層圓柱波導傳播常數電磁模式高功率微波
外文關鍵詞: general dispersion equation, lossy layer cylindrical waveguide, propagation constant, electromagnetic mode, High power microwave
相關次數: 點閱:72下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Over-mode cylindrical waveguide in a high-power microwave, millimeter-wave generation, amplification, transmission has a very wide range of applications. Based on the dispersion equation, we study a cylindrical waveguide with a lossy layer’s propagation and attenuation constant. When the electric conductivity of the waveguide wall is finite and lossy material coated on its surface the characteristic of the propagation of an electromagnetic wave will vary from different mode. An analytical expression of mode propagation constant is very important for studying microwave loss mechanism in the waveguide.

    Considering the impact of loss of material with thickness, we derive the general dispersion equation in different modes and in the limit of approximation formula. The propagation characteristics are studied and numerically calculated for analyzing and comparing the difference of the calculated results with the general dispersion equation and approximation formula. These equations can be applied to the case which near the cutoff frequency. By using this approximation formula and general dispersion equation we can obtain attenuation and propagation constant versus lossy layer thickness, operating frequency, and lossy layer conductivity. And make a comparison with the simulation software HFSS (High Frequency Structure Simulator). The results show that in the high conductivity and in the vicinity of the cutoff frequency, the propagation constant calculated by general dispersion equation to be in good agreement with HFSS.


    目錄 Abstract i 摘要 ii 致謝 iii 第一章 序論 1 1.1 磁旋管簡介 1 1.2 電子迴旋脈射的原理 2 1.3 論文概述 4 第二章 計算傳播常數模型推導 6 2.1. 傳統微擾法 6 2.2. 邊界條件微擾法 9 2.3. 圓柱有損波導(2層)的色散方程式 13 2.4. 圓柱有損波導(2層)的微擾理論 16 2.5. 圓柱有損波導(3層)的色散方程式 20 2.6. 圓柱有損波導(3層)的微擾理論 23 第三章 計算結果與討論 26 3.1 相位常數和衰減常數對頻率的變化關係 26 3.2 相位常數和衰減常數對損耗厚度的變化關係 32 3.3 相位常數和衰減常數對損耗導電率的變化關係 35 3.4 前五個模傳播常數對頻率的變化關係 38 3.5 HFSS模擬結果比較 45 第四章 結論 47 Appendix A 48 Appendix B 49 參考文獻 52

    參考文獻

    [1] P. Forman, Rev. Mod. Phys. 67, 397 (1995).
    [2] Gaponov-Grekhov and V. L. Granatstein, “Applications of
    High-Power Microwaves”, Artech House, Boston, London (1994).
    [3] K. R. Chu, Rev. Mod. Phys. 76, 489 (2004).
    [4] K. R. Chu, “Lecture note for nonlinear formulation for gyro-TWT and CARM amplifier”.
    [5] K. R. Chu, H. Y. Chen, C. L. Hung, T. H. Chang, L. R. Barentt, S. H.
    Chen, T. T. Yang and D. Dialetis, IEEE Trans. Plasma Sci. 27, 391
    (1999).
    [6] C. S. Kou, S. H. Chen, L. R. Barnett, H. Y. Chen, and K. R. Chu, Phys. Rev. Lett. 70, 924 (1993).
    [7] C. S. Kou, Phys. Plasmas, 1, 3093 (1994).
    [8] K. R. Chu, “Lecture note of Time Domain Analysis of Open Cavity”.
    [9] D. M. Pozar, Microwave Engineering, 3rd Ed. (John Wiley & Sons, 2005), Chap.1, 2, 3.
    [10] J. D. Jackson, Classical Electrodynamics, 3rd Ed, (John Wiley & Sons Inc, New York, 1999), Chap. 8.
    [11] C. L. Hung, and Y. S. Yeh, Int. J. Infrared and Millimeter Waves, 24, 2025 (2003).
    [12] J. L. Anderson, IEEE Trans. MTT, 37, 1819 (1989).
    [13] C. Dragone, Bell Syst. Tech. J., 60, 89 (1981).
    [14] G. J. Gabriel and M. E. Brodwin, IEEE Trans. MTT, 13, 364 (1965).

    [15] R. F. Harrington, Time Harmonic Electromagnetic Fields (McGraw-Hill, New York, 1961).
    [16] Jirun Luo and Chongqing Jiao, Appl. Phys. Lett. 88, 061115 (2006).
    [17] Jirun Luo and Chongqing Jiao, Acta Phys. Sin., 55, 6360 (2006).
    [18] Zhixun Huang and Cheng Zeng, Microwave and Optical Technology Letters, 6, 342 (1993).
    [19] R. C. Chou and S. W Lee, IEEE Trans. MTT, 36, 1167 (1988).
    [20] K. Q. Chang and D. J. Li, Electromagnetic Theory for Microwaves and Optoelectronics (Springer, New York, 1998), p. 250.
    [21] J. Shafii and R. J. Vernon, IEEE Trans. MTT, 50, 1361 (2002).
    [22] J. W. Carlin and P. D. Agostino, Bell Syst. Tech. J., 52, 453 (1973).
    [23] Choon Sae Lee, Shung-Wu Lee and Shun-Lien Chuang, IEEE Trans. MTT, 34, 773 (1986).
    [24] D. Rovetta, A. V. Bosisio, G. Drufuca, IEEE Microwave and Wireless Components Letters, 16, 314 (2006).
    [25] T. Abe and Y. Yamaguchi, IEEE Trans. MTT, 29, 707 (1981).
    [26] V. L. Milan and S. F. Dejan, IEEE Trans. MTT, 55, 518 (2007).
    [27] C. S. Lee, S. W. Lee, and S. L. Chuang, IEEE Trans. MTT, 34, 773 (1986).
    [28] Shanjie Chang and Jianming Jin, Computation of special functions, (Wiley, New York, 1996), Chap. 5.
    [29] Ansoft, “HFSS 11 User’s Manual”.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE