研究生: |
黃詩涵 Huang, Shih-Han |
---|---|
論文名稱: |
主軸振動與聲音訊號於晶圓磨削之應用研究 A Study of Wafer Grinding Using Spindle Vibration and Sound Signal |
指導教授: |
葉哲良
Yeh, J-Andrew |
口試委員: |
黃國政
Huang, Kuo-Cheng 鄭志鈞 Cheng, Chih-Chun 蔡孟勳 Tsai, Meng-Shiun 駱遠 Luo, Yuan 曾文鵬 Tseng, Wen-Peng 徐文慶 Hsu, Wen-Ching |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 79 |
中文關鍵詞: | 晶圓研磨 、磨削監測 、振動信號 、聲音訊號 |
外文關鍵詞: | silicon wafer grinding, grinding process monitoring, Vibration Signal, Audible Sound Signal |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在晶圓加工的過程中,晶柱(Ingot)切割下來後圓邊(Edge Grinding/profiling)的製程可以防止後續加工過程產生碎邊。然而因為連續大量的生產過程,以現行的品檢及預防維護的方式容易造成人為誤判,使得機台容易因問題累積而加工出報廢品(scrap)或需要重工(rework),使得加工成本提高。本研究透過加裝於主軸上的加速規和置於靠近研磨區的麥克風,透過訊號分析圓邊製程中時域訊號和頻域與砂輪磨耗的關係,在下次加工之前採取對應手段以避免不必要的浪費。
In the wafer manufacturing process, edge grinding/edge profiling is aimed to prevent edge chipping in the following process. However, due to the continuous mass production, it’s common for grinding machine to function abnormally and thus produce failed wafers (scraps) under the traditional preventive maintenance. This research is aimed at analyzing the spindle vibration signal and audible sound microphone to correlate these signals with the grinding wheel wear.
1. F. A. Alexandre, W. N. Lopes, F. I. Ferreira, F. R. L. Dotto, P. R. Aguiar, and E. C. Bianchi (2017). Chatter Vibration Monitoring in the Surface Grinding Process through Digital Signal Processing of Acceleration Signal. Multidisciplinary Digital Publishing Institute Proceedings.
2. J. A. Couey, E. R. Marsh, B. R. Knapp, R. R. Vallance (2005). "In-process force monitoring for precision grinding semiconductor silicon wafers." 7(5/6): 430.
3. A. HOSOKAWA, K. MASHIMO, K. YAMADA, T. UEDA (2004). "Evaluation of grinding wheel surface by means of grinding sound discrimination." 47(1): 52-58.
4. I.Inasaki, K.Okamura (1985). "Monitoring of dressing and grinding processes with acoustic emission signals." 34(1): 277-280.
5. P. R. Aguiar, C. R. Foschini, T. V. França, Wenderson N. Lopes (2018). "Feature extraction using frequency spectrum and time domain analysis of vibration signals to monitoring advanced ceramic in grinding process." 13(1): 1-8.
6. K. Kannan, N. Arunachalam (2018). "Grinding wheel redress life estimation using force and surface texture analysis." 72: 1439-1444.
7. T. Warren Liao (2010). "Feature extraction and selection from acoustic emission signals with an application in grinding wheel condition monitoring." 23(1): 74-84.
8. Y, -K. Lin, B.-F. Wu, C.-M. Chen (2018). Characterization of Grinding Wheel Condition by Acoustic Emission Signals. 2018 International Conference on System Science and Engineering (ICSSE), IEEE.
9. C.-S. Liu, Y.-A. Li (2018). "Evaluation of grinding wheel loading phenomena by using acoustic emission signals." 99(5-8): 1109-1117.
10. E. R. Marsh, A. W. Moerlein, T. R. Deakyne, M. J. Dorenb (2008). "In-process measurement of form error and force in cylindrical-plunge grinding." 32(4): 348-352.
11. R. D. Nathan, L. Vijayaraghavan, R. Krishnamurthy (1999). "In-process monitoring of grinding burn in the cylindrical grinding of steel." 91(1-3): 37-42.
12. B. Shen, G. Xiao, C. Guo, S. Malkin and A.-J. Shih (2008). "Thermocouple fixation method for grinding temperature measurement." 130(5): 051014.
13. J. Sun, F. Qin, P. Chen, T. An (2016). "A predictive model of grinding force in silicon wafer self-rotating grinding." 109: 74-86.
14. X.-L. Zhu, R.-K. Kang, Y.-Q. Wang, D.-M. Guo (2010). Development of three-dimensional dynamometer for wafer grinder. Advanced Materials Research, Trans Tech Publ.